96 research outputs found

    SPINT2 deregulation in prostate carcinoma

    Get PDF
    SPINT2 is a tumor suppressor gene that inhibits proteases implicated in cancer progression, like HGFA, hepsin and matriptase. Loss of SPINT2 expression in tumors has been associated with gene promoter hypermethylation; however, little is known about the mechanisms of SPINT2 deregulation in prostate cancer (PCa). We aimed to analyze SPINT2 expression levels and understand the possible regulation by SPINT2 promoter hypermethylation in PCa. In a cohort of 57 cases including non-neoplastic and PCa tissues, SPINT2 expression and promoter methylation was analyzed by immunohistochemistry and methylation-specific PCR, respectively. Methylation status of the SPINT2 promoter was also evaluated by bisulfite sequencing and 5-aza-2’-deoxycytidine treatment. Oncomine and TCGA databases were used to perform in silico PCa analysis of SPINT2 mRNA and methylation levels. A reduction in SPINT2 expression levels from nonneoplastic to PCa tissues was observed; however, none of the cases exhibited SPINT2 promoter methylation. Both bisulfite sequencing and 5-aza demonstrated that SPINT2 promoter is not methylated in PCa cells. Bioinformatics approaches did not show downregulation of SPINT2 at the mRNA level and, in corroboration with our results, SPINT2 promoter region is reported to be unmethylated. Our study suggests an involvement of SPINT2 in PCa tumorigenesis, probably in association with a post-translational regulation of SPINT2.The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was supported by the ICVS internal research funds of participating authors and by FCT project, ref. PTDC/SAUONC/115513/2009. F.P. received fellowship from the FCT, ref. SFRH/BD/81369/2011 and M.VP from the ON.2 SR&TD Integrated Program (N-01-01-01-24-01-07), ref. UMINHO/ BPD/36/2013

    The New Politics of Global Tax Governance: Taking Stock a Decade After the Financial Crisis

    Get PDF
    The financial crisis of 2007–2009 is now broadly recognised as a once-in-a-generation inflection point in the history of global economic governance. It has also prompted a reconsideration of established paradigms in international political economy (IPE) scholarship. Developments in global tax governance open a window onto these ongoing changes, and in this essay we discuss four recent volumes on the topic drawn from IPE and beyond, arguing against an emphasis on institutional stability and analyses that consider taxation in isolation. In contrast, we identify unprecedented changes in tax cooperation that reflect a significant contemporary reconfiguration of the politics of global economic governance writ large. To develop these arguments, we discuss the links between global tax governance and four fundamental changes underway in IPE: the return of the state through more activist policies; the global power shift towards large emerging markets; the politics of austerity and populism; and the digitalisation of the economy

    Reduced expression of a gene proliferation signature is associated with enhanced malignancy in colon cancer

    Get PDF
    The association between cell proliferation and the malignant potential of colon cancer is not well understood. Here, we evaluated this association using a colon-specific gene proliferation signature (GPS). The GPS was derived by combining gene expression data obtained from the analysis of a cancer cell line model and a published colon crypt profile. The GPS was overexpressed in both actively cycling cells in vitro and the proliferate compartment of colon crypts. K-means clustering was used to independantly stratify two cohorts of colon tumours into two groups with high and low GPS expression. Notably, we observed a significant association between reduced GPS expression and an increased likelihood of recurrence (P<0.05), leading to shorter disease-free survival in both cohorts. This finding was not a result of methodological bias as we verified the well-established association between breast cancer malignancy and increased proliferation, by applying our GPS to public breast cancer data. In this study, we show that reduced proliferation is a biological feature characterizing the majority of aggressive colon cancers. This contrasts with many other carcinomas such as breast cancer. Investigating the reasons underlying this unusual observation may provide important insight into the biology of colon cancer progression and putative novel therapy options

    Comprehensive resequence analysis of a 97 kb region of chromosome 10q11.2 containing the MSMB gene associated with prostate cancer

    Get PDF
    Genome-wide association studies of prostate cancer have identified single nucleotide polymorphism (SNP) markers in a region of chromosome 10q11.2, harboring the microseminoprotein-β (MSMB) gene. Both the gene product of MSMB, the prostate secretory protein 94 (PSP94) and its binding protein (PSPBP), have been previously investigated as serum biomarkers for prostate cancer progression. Recent functional work has shown that different alleles of the significantly associated SNP in the promoter of MSMB found to be associated with prostate cancer risk, rs10993994, can influence its expression in tumors and in vitro studies. Since it is plausible that additional variants in this region contribute to the risk of prostate cancer, we have used next-generation sequencing technology to resequence a ~97-kb region that includes the area surrounding MSMB (chr10: 51,168,025–51,265,101) in 36 prostate cancer cases, 26 controls of European origin, and 8 unrelated CEPH individuals in order to identify additional variants to investigate in functional studies. We identified 241 novel polymorphisms within this region, including 142 in the 51-kb block of linkage disequilibrium (LD) that contains rs10993994 and the proximal promoter of MSMB. No sites were observed to be polymorphic within the exons of MSMB

    Candidate pathways and genes for prostate cancer: a meta-analysis of gene expression data

    Get PDF
    <p>Abstract</p> <p>Backgound</p> <p>The genetic mechanisms of prostate tumorigenesis remain poorly understood, but with the advent of gene expression array capabilities, we can now produce a large amount of data that can be used to explore the molecular and genetic mechanisms of prostate tumorigenesis.</p> <p>Methods</p> <p>We conducted a meta-analysis of gene expression data from 18 gene array datasets targeting transition from normal to localized prostate cancer and from localized to metastatic prostate cancer. We functionally annotated the top 500 differentially expressed genes and identified several candidate pathways associated with prostate tumorigeneses.</p> <p>Results</p> <p>We found the top differentially expressed genes to be clustered in pathways involving integrin-based cell adhesion: integrin signaling, the actin cytoskeleton, cell death, and cell motility pathways. We also found integrins themselves to be downregulated in the transition from normal prostate tissue to primary localized prostate cancer. Based on the results of this study, we developed a collagen hypothesis of prostate tumorigenesis. According to this hypothesis, the initiating event in prostate tumorigenesis is the age-related decrease in the expression of collagen genes and other genes encoding integrin ligands. This concomitant depletion of integrin ligands leads to the accumulation of ligandless integrin and activation of integrin-associated cell death. To escape integrin-associated death, cells suppress the expression of integrins, which in turn alters the actin cytoskeleton, elevates cell motility and proliferation, and disorganizes prostate histology, contributing to the histologic progression of prostate cancer and its increased metastasizing potential.</p> <p>Conclusion</p> <p>The results of this study suggest that prostate tumor progression is associated with the suppression of integrin-based cell adhesion. Suppression of integrin expression driven by integrin-mediated cell death leads to increased cell proliferation and motility and increased tumor malignancy.</p

    Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process

    Get PDF
    BACKGROUND: Prostate cancer is characterized by heterogeneity in the clinical course that often does not correlate with morphologic features of the tumor. Metastasis reflects the most adverse outcome of prostate cancer, and to date there are no reliable morphologic features or serum biomarkers that can reliably predict which patients are at higher risk of developing metastatic disease. Understanding the differences in the biology of metastatic and organ confined primary tumors is essential for developing new prognostic markers and therapeutic targets. METHODS: Using Affymetrix oligonucleotide arrays, we analyzed gene expression profiles of 24 androgen-ablation resistant metastatic samples obtained from 4 patients and a previously published dataset of 64 primary prostate tumor samples. Differential gene expression was analyzed after removing potentially uninformative stromal genes, addressing the differences in cellular content between primary and metastatic tumors. RESULTS: The metastatic samples are highly heterogenous in expression; however, differential expression analysis shows that 415 genes are upregulated and 364 genes are downregulated at least 2 fold in every patient with metastasis. The expression profile of metastatic samples reveals changes in expression of a unique set of genes representing both the androgen ablation related pathways and other metastasis related gene networks such as cell adhesion, bone remodelling and cell cycle. The differentially expressed genes include metabolic enzymes, transcription factors such as Forkhead Box M1 (FoxM1) and cell adhesion molecules such as Osteopontin (SPP1). CONCLUSION: We hypothesize that these genes have a role in the biology of metastatic disease and that they represent potential therapeutic targets for prostate cancer

    Postnatal growth in preterm infants and later health outcomes: a systematic review.

    Get PDF
    In preterm infants, poor postnatal growth is associated with adverse neurocognitive outcomes; conversely, rapid postnatal growth is supposedly harmful for future development of metabolic diseases. CONCLUSION: In this systematic review, observational studies reported consistent positive associations between postnatal weight or head growth and neurocognitive outcomes; however, there was limited evidence from the few intervention studies. Evidence linking postnatal weight gain to later adiposity and other cardiovascular disease risk factors in preterm infants was also limited.The expert group received funding from the ILSI Europe Metabolic Imprinting Task Force (please see acknowledgements for further information). Industry members of this task force are listed on the ILSI Europe website at www.ilsi.eu. KMG is supported by the National Institute for Health Research through the NIHR Southampton Biomedical Research Centre and by the European Union’s Seventh Framework Programme (FP7/2007-2013), project EarlyNutrition under grant agreement no 289346.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/apa.1312

    A Tissue Biomarker Panel Predicting Systemic Progression after PSA Recurrence Post-Definitive Prostate Cancer Therapy

    Get PDF
    Many men develop a rising PSA after initial therapy for prostate cancer. While some of these men will develop a local or metastatic recurrence that warrants further therapy, others will have no evidence of disease progression. We hypothesized that an expression biomarker panel can predict which men with a rising PSA would benefit from further therapy.A case-control design was used to test the association of gene expression with outcome. Systemic (SYS) progression cases were men post-prostatectomy who developed systemic progression within 5 years after PSA recurrence. PSA progression controls were matched men post-prostatectomy with PSA recurrence but no evidence of clinical progression within 5 years. Using expression arrays optimized for paraffin-embedded tissue RNA, 1021 cancer-related genes were evaluated-including 570 genes implicated in prostate cancer progression. Genes from 8 previously reported marker panels were included. A systemic progression model containing 17 genes was developed. This model generated an AUC of 0.88 (95% CI: 0.84-0.92). Similar AUCs were generated using 3 previously reported panels. In secondary analyses, the model predicted the endpoints of prostate cancer death (in SYS cases) and systemic progression beyond 5 years (in PSA controls) with hazard ratios 2.5 and 4.7, respectively (log-rank p-values of 0.0007 and 0.0005). Genes mapped to 8q24 were significantly enriched in the model.Specific gene expression patterns are significantly associated with systemic progression after PSA recurrence. The measurement of gene expression pattern may be useful for determining which men may benefit from additional therapy after PSA recurrence

    DNA repair: the culprit for tumor-initiating cell survival?

    Get PDF
    The existence of “tumor-initiating cells” (TICs) has been a topic of heated debate for the last few years within the field of cancer biology. Their continuous characterization in a variety of solid tumors has led to an abundance of evidence supporting their existence. TICs are believed to be responsible for resistance against conventional treatment regimes of chemotherapy and radiation, ultimately leading to metastasis and patient demise. This review summarizes DNA repair mechanism(s) and their role in the maintenance and regulation of stem cells. There is evidence supporting the hypothesis that TICs, similar to embryonic stem (ES) cells and hematopoietic stem cells (HSCs), display an increase in their ability to survive genotoxic stress and injury. Mechanistically, the ability of ES cells, HSCs and TICs to survive under stressful conditions can be attributed to an increase in the efficiency at which these cells undergo DNA repair. Furthermore, the data presented in this review summarize the results found by our lab and others demonstrating that TICs have an increase in their genomic stability, which can allow for TIC survival under conditions such as anticancer treatments, while the bulk population of tumor cells dies. We believe that these data will greatly impact the development and design of future therapies being engineered to target and eradicate this highly aggressive cancer cell population
    corecore