43 research outputs found
Intra-colony channels in E. coli function as a nutrient uptake system
The ability of microorganisms to grow as aggregated assemblages has been known for many years, however their structure has remained largely unexplored across multiple spatial scales. The development of the Mesolens, an optical system which uniquely allows simultaneous imaging of individual bacteria over a 36 mm2 field of view, has enabled the study of mature Escherichia coli macro-colony biofilm architecture like never before. The Mesolens enabled the discovery of intra-colony channels on the order of 10 μm in diameter, that are integral to E. coli macro-colony biofilms and form as an emergent property of biofilm growth. These channels have a characteristic structure and re-form after total mechanical disaggregation of the colony. We demonstrate that the channels are able to transport particles and play a role in the acquisition of and distribution of nutrients through the biofilm. These channels potentially offer a new route for the delivery of dispersal agents for antimicrobial drugs to biofilms, ultimately lowering their impact on public health and industry
Comparative functional analysis of aquaporins/glyceroporins in mammals and anurans
Maintenance of fluid homeostasis is critical to establishing and maintaining normal physiology. The landmark discovery of membrane water channels (aquaporins; AQPs) ushered in a new area in osmoregulatory biology that has drawn from and contributed to diverse branches of biology, from molecular biology and genomics to systems biology and evolution, and from microbial and plant biology to animal and translational physiology. As a result, the study of AQPs provides a unique and integrated backdrop for exploring the relationships between genes and genome systems, the regulation of gene expression, and the physiologic consequences of genetic variation. The wide species distribution of AQP family members and the evolutionary conservation of the family indicate that the control of membrane water flux is a critical biological process. AQP function and regulation is proving to be central to many of the pathways involved in individual physiologic systems in both mammals and anurans. In mammals, AQPs are essential to normal secretory and absorptive functions of the eye, lung, salivary gland, sweat glands, gastrointestinal tract, and kidney. In urinary, respiratory, and gastrointestinal systems, AQPs are required for proper urine concentration, fluid reabsorption, and glandular secretions. In anurans, AQPs are important in mediating physiologic responses to changes in the external environment, including those that occur during metamorphosis and adaptation from an aquatic to terrestrial environment and thermal acclimation in anticipation of freezing. Therefore, an understanding of AQP function and regulation is an important aspect of an integrated approach to basic biological research
Recommended from our members
Acute effects of isovolemic hemodilution with crystalloids in a canine model of focal cerebral ischemia
We used 44 splenectomized dogs to study the effects of isovolemic hemodilution with a crystalloid solution. The dogs were randomly divided into a hemodilution and a control group. In each group, 17 dogs were subjected to 6 hours of internal carotid and middle cerebral artery occlusion, and five dogs received sham operations. Isovolemic hemodilution by phlebotomy and Ringer's lactate infusion was performed 30 minutes after arterial occlusion and resulted in an average hematocrit of 32-33%. Hemodilution significantly reduced viscosity, fibrinogen and total protein concentrations, and plasma oncotic pressure. Systemic arterial blood pressure and pulmonary wedge pressure decreased slightly with hemodilution, but central venous pressure and pulmonary arterial pressure did not change significantly. There was a similar decrease in cardiac index in both hemodiluted and control dogs, which may have been due to the effects of barbiturate anesthesia. Intracranial pressure increased significantly with time in all dogs subjected to arterial occlusion, but this increase was significantly more severe in the hemodiluted dogs. Specific gravity, measured just after the dogs were killed, 6 hours after hemodilution, was significantly lower in the white matter and basal ganglia of the left (ischemic) hemisphere in hemodiluted dogs than in controls. Regional cerebral blood flow decreased significantly in the left hemisphere after arterial occlusion. This decrease was almost completely reversed by hemodilution except in the basal ganglia, where the increase in edema caused by hemodilution was the greatest
Single-Cell Technologies to Study Phenotypic Heterogeneity and Bacterial Persisters
Antibiotic persistence is a phenomenon in which rare cells of a clonal bacterial population can survive antibiotic doses that kill their kin, even though the entire population is genetically susceptible. With antibiotic treatment failure on the rise, there is growing interest in understanding the molecular mechanisms underlying bacterial phenotypic heterogeneity and antibiotic persistence. However, elucidating these rare cell states can be technically challenging. The advent of single-cell techniques has enabled us to observe and quantitatively investigate individual cells in complex, phenotypically heterogeneous populations. In this review, we will discuss current technologies for studying persister phenotypes, including fluorescent tags and biosensors used to elucidate cellular processes; advances in flow cytometry, mass spectrometry, Raman spectroscopy, and microfluidics that contribute high-throughput and high-content information; and next-generation sequencing for powerful insights into genetic and transcriptomic programs. We will further discuss existing knowledge gaps, cutting-edge technologies that can address them, and how advances in single-cell microbiology can potentially improve infectious disease treatment outcomes
Single-Cell Technologies to Study Phenotypic Heterogeneity and Bacterial Persisters
Antibiotic persistence is a phenomenon in which rare cells of a clonal bacterial population can survive antibiotic doses that kill their kin, even though the entire population is genetically susceptible. With antibiotic treatment failure on the rise, there is growing interest in understanding the molecular mechanisms underlying bacterial phenotypic heterogeneity and antibiotic persistence. However, elucidating these rare cell states can be technically challenging. The advent of single-cell techniques has enabled us to observe and quantitatively investigate individual cells in complex, phenotypically heterogeneous populations. In this review, we will discuss current technologies for studying persister phenotypes, including fluorescent tags and biosensors used to elucidate cellular processes; advances in flow cytometry, mass spectrometry, Raman spectroscopy, and microfluidics that contribute high-throughput and high-content information; and next-generation sequencing for powerful insights into genetic and transcriptomic programs. We will further discuss existing knowledge gaps, cutting-edge technologies that can address them, and how advances in single-cell microbiology can potentially improve infectious disease treatment outcomes