26,308 research outputs found
Brownian Motion Model of Quantization Ambiguity and Universality in Chaotic Systems
We examine spectral equilibration of quantum chaotic spectra to universal
statistics, in the context of the Brownian motion model. Two competing time
scales, proportional and inversely proportional to the classical relaxation
time, jointly govern the equilibration process. Multiplicity of quantum systems
having the same semiclassical limit is not sufficient to obtain equilibration
of any spectral modes in two-dimensional systems, while in three-dimensional
systems equilibration for some spectral modes is possible if the classical
relaxation rate is slow. Connections are made with upper bounds on
semiclassical accuracy and with fidelity decay in the presence of a weak
perturbation.Comment: 13 pages, 6 figures, submitted to Phys Rev
The Influence of Thermal Pressure on Equilibrium Models of Hypermassive Neutron Star Merger Remnants
The merger of two neutron stars leaves behind a rapidly spinning hypermassive
object whose survival is believed to depend on the maximum mass supported by
the nuclear equation of state, angular momentum redistribution by
(magneto-)rotational instabilities, and spindown by gravitational waves. The
high temperatures (~5-40 MeV) prevailing in the merger remnant may provide
thermal pressure support that could increase its maximum mass and, thus, its
life on a neutrino-cooling timescale. We investigate the role of thermal
pressure support in hypermassive merger remnants by computing sequences of
spherically-symmetric and axisymmetric uniformly and differentially rotating
equilibrium solutions to the general-relativistic stellar structure equations.
Using a set of finite-temperature nuclear equations of state, we find that hot
maximum-mass critically spinning configurations generally do not support larger
baryonic masses than their cold counterparts. However, subcritically spinning
configurations with mean density of less than a few times nuclear saturation
density yield a significantly thermally enhanced mass. Even without decreasing
the maximum mass, cooling and other forms of energy loss can drive the remnant
to an unstable state. We infer secular instability by identifying approximate
energy turning points in equilibrium sequences of constant baryonic mass
parametrized by maximum density. Energy loss carries the remnant along the
direction of decreasing gravitational mass and higher density until instability
triggers collapse. Since configurations with more thermal pressure support are
less compact and thus begin their evolution at a lower maximum density, they
remain stable for longer periods after merger.Comment: 20 pages, 12 figures. Accepted for publication in Ap
Reading-out the state of a flux qubit by Josephson transmission line solitons
We describe the read-out process of the state of a Josephson flux qubit via
solitons in Josephson transmission lines (JTL) as they are in use in the
standard rapid single flux quantum (RSFQ) technology. We consider the situation
where the information about the state of the qubit is stored in the time delay
of the soliton. We analyze dissipative underdamped JTLs, take into account
their jitter, and provide estimates of the measuring time and efficiency of the
measurement for relevant experimental parameters.Comment: 13 pages, 12 figure
Scar Intensity Statistics in the Position Representation
We obtain general predictions for the distribution of wave function
intensities in position space on the periodic orbits of chaotic ballistic
systems. The expressions depend on effective system size N, instability
exponent lambda of the periodic orbit, and proximity to a focal point of the
orbit. Limiting expressions are obtained that include the asymptotic
probability distribution of rare high-intensity events and a perturbative
formula valid in the limit of weak scarring. For finite system sizes, a single
scaling variable lambda N describes deviations from the semiclassical N ->
infinity limit.Comment: To appear in Phys. Rev. E, 10 pages, including 4 figure
Ability of γδ T cells to modulate the Foxp3 T cell response is dependent on adenosine.
Whether γδ T cells inhibit or enhance the Foxp3 T cell response depends upon their activation status. The critical enhancing effector in the supernatant is adenosine. Activated γδ T cells express adenosine receptors at high levels, which enables them to deprive Foxp3+ T cells of adenosine, and to inhibit their expansion. Meanwhile, cell-free supernatants of γδ T cell cultures enhance Foxp3 T cell expansion. Thus, inhibition and enhancement by γδ T cells of Foxp3 T cell response are a reflection of the balance between adenosine production and absorption by γδ T cells. Non-activated γδ T cells produce adenosine but bind little, and thus enhance the Foxp3 T cell response. Activated γδ T cells express high density of adenosine receptors and have a greatly increased ability to bind adenosine. Extracellular adenosine metabolism and expression of adenosine receptor A2ARs by γδ T cells played a major role in the outcome of γδ and Foxp3 T cell interactions. A better understanding of the functional conversion of γδ T cells could lead to γδ T cell-targeted immunotherapies for related diseases
Energy Extraction From Gravitational Collapse to Static Black Holes
The mass--energy formula of black holes implies that up to 50% of the energy
can be extracted from a static black hole. Such a result is reexamined using
the recently established analytic formulas for the collapse of a shell and
expression for the irreducible mass of a static black hole. It is shown that
the efficiency of energy extraction process during the formation of the black
hole is linked in an essential way to the gravitational binding energy, the
formation of the horizon and the reduction of the kinetic energy of implosion.
Here a maximum efficiency of 50% in the extraction of the mass energy is shown
to be generally attainable in the collapse of a spherically symmetric shell:
surprisingly this result holds as well in the two limiting cases of the
Schwarzschild and extreme Reissner-Nordstr\"{o}m space-times. Moreover, the
analytic expression recently found for the implosion of a spherical shell onto
an already formed black hole leads to a new exact analytic expression for the
energy extraction which results in an efficiency strictly less than 100% for
any physical implementable process. There appears to be no incompatibility
between General Relativity and Thermodynamics at this classical level.Comment: 7 pages, 2 figures, to appear on Int. Journ. Mod. Phys.
- …