4,532 research outputs found

    Community Detection via Maximization of Modularity and Its Variants

    Full text link
    In this paper, we first discuss the definition of modularity (Q) used as a metric for community quality and then we review the modularity maximization approaches which were used for community detection in the last decade. Then, we discuss two opposite yet coexisting problems of modularity optimization: in some cases, it tends to favor small communities over large ones while in others, large communities over small ones (so called the resolution limit problem). Next, we overview several community quality metrics proposed to solve the resolution limit problem and discuss Modularity Density (Qds) which simultaneously avoids the two problems of modularity. Finally, we introduce two novel fine-tuned community detection algorithms that iteratively attempt to improve the community quality measurements by splitting and merging the given network community structure. The first of them, referred to as Fine-tuned Q, is based on modularity (Q) while the second one is based on Modularity Density (Qds) and denoted as Fine-tuned Qds. Then, we compare the greedy algorithm of modularity maximization (denoted as Greedy Q), Fine-tuned Q, and Fine-tuned Qds on four real networks, and also on the classical clique network and the LFR benchmark networks, each of which is instantiated by a wide range of parameters. The results indicate that Fine-tuned Qds is the most effective among the three algorithms discussed. Moreover, we show that Fine-tuned Qds can be applied to the communities detected by other algorithms to significantly improve their results

    Extension of Modularity Density for Overlapping Community Structure

    Full text link
    Modularity is widely used to effectively measure the strength of the disjoint community structure found by community detection algorithms. Although several overlapping extensions of modularity were proposed to measure the quality of overlapping community structure, there is lack of systematic comparison of different extensions. To fill this gap, we overview overlapping extensions of modularity to select the best. In addition, we extend the Modularity Density metric to enable its usage for overlapping communities. The experimental results on four real networks using overlapping extensions of modularity, overlapping modularity density, and six other community quality metrics show that the best results are obtained when the product of the belonging coefficients of two nodes is used as the belonging function. Moreover, our experiments indicate that overlapping modularity density is a better measure of the quality of overlapping community structure than other metrics considered.Comment: 8 pages in Advances in Social Networks Analysis and Mining (ASONAM), 2014 IEEE/ACM International Conference o

    Extraction of Neutrino Flux with the Low ν\nu Method at MiniBooNE Energies

    Full text link
    We describe the application of the `low-ν\nu' method to the extraction of the neutrino flux at MiniBooNE energies. As an example, we extract the relative energy dependence of the flux from published MiniBooNE quasielastic scattering cross sections with ν<0.2\nu < 0.2 GeV and ν<0.1\nu < 0.1 GeV (here ν\nu is the energy transfer to the target). We find that the flux extracted from the `low-ν\nu' cross sections is consistent with the nominal flux used by MiniBooNE. We fit the MiniBooNE cross sections over the entire kinematic range to various parametrizations of the axial form factor. We find that if the overall normalization of the fit is allowed to float within the normalization errors, the extracted values of the axial vector mass are independent of the flux. Within the Fermi gas model, the Q2Q^2 distribution of the MiniBooNE data is described by a standard dipole form factor with MA=1.41±0.04M_A=1.41\pm0.04 GeV. If nuclear transverse enhancement in the vector form factors is accounted for, the data are best fit with a modified dipole form factor with MA=1.10±0.03M_A=1.10\pm 0.03 GeV.Comment: 5 pages, 6 figures, (presented by A. Bodek at CIPANP 2012, St. Petersburg, FL, June 2012, and at NuFact 2012, Williamsburg, VA, July 2012

    Charged lepton-nucleus inelastic scattering at high energies

    Full text link
    The composite model is constructed to describe inelastic high-energy scattering of muons and taus in standard rock. It involves photonuclear interactions at low Q2Q^2 as well as moderate Q2Q^2 processes and the deep inelastic scattering (DIS). In the DIS region the neutral current contribution is taken into consideration. Approximation formulas both for the muons and tau energy loss in standard rock are presented for wide energy range.Comment: 5 pages, 4 figures. Presented at 19th European Cosmic Ray Symposium (ECRS 2004), Florence, Italy, 30 Aug - 3 Sep 2004. Submitted to Int.J.Mod.Phys.

    GZK photons as UHECR above 1019^{19} eV

    Full text link
    "GZK photons" are produced by extragalactic nucleons through the resonant photoproduction of pions. We present the expected range of the GZK photon fraction of UHECR, assuming a particular UHECR spectrum and primary nucleons, and compare it with the minimal photon fraction predicted by Top-Down models.Comment: Talk given at TAUP2005, Sept. 10-14 2005, Zaragoza (Spain); 3 pages, 2 figure

    Neutrino-nucleon cross sections at energies of Megaton-scale detectors

    Full text link
    An updated set of (anti)neutrino-nucleon charged and neutral current cross sections at 3 GeVEν100 GeV3~{\rm GeV} \lesssim E_\nu \lesssim 100~{\rm GeV} is presented. These cross sections are of particular interest for the detector optimization and data processing and interpretation in the future Megaton-scale experiments like PINGU, ORCA, and Hyper-Kamiokande. Finite masses of charged leptons and target mass corrections in exclusive and deep inelastic (νˉ)νN(\bar\nu)\nu N interactions are taken into account. A new set of QCD NNLO parton density functions, the ABMP15, is used for calculation of the DIS cross sections. The sensitivity of the cross sections to phenomenological parameters and to extrapolations of the nucleon structure functions to small xx and Q2Q^2 is studied. An agreement within the uncertainties of our calculations with experimental data is demonstrated.Comment: 4 pages, 4 figures, accepted for the VLVnT-2015 Conference proceedings, will be published on EPJ Web of Conference

    Axial, induced pseudoscalar, and pion-nucleon form factors in manifestly Lorentz-invariant chiral perturbation theory

    Get PDF
    We calculate the nucleon form factors G_A and G_P of the isovector axial-vector current and the pion-nucleon form factor G_piN in manifestly Lorentz-invariant baryon chiral perturbation theory up to and including order O(p^4). In addition to the standard treatment including the nucleon and pions, we also consider the axial-vector meson a_1 as an explicit degree of freedom. This is achieved by using the reformulated infrared renormalization scheme. We find that the inclusion of the axial-vector meson effectively results in one additional low-energy coupling constant that we determine by a fit to the data for G_A. The inclusion of the axial-vector meson results in an improved description of the experimental data for G_A, while the contribution to G_P is small.Comment: 21 pages, 9 figures, REVTeX
    corecore