4,532 research outputs found
Community Detection via Maximization of Modularity and Its Variants
In this paper, we first discuss the definition of modularity (Q) used as a
metric for community quality and then we review the modularity maximization
approaches which were used for community detection in the last decade. Then, we
discuss two opposite yet coexisting problems of modularity optimization: in
some cases, it tends to favor small communities over large ones while in
others, large communities over small ones (so called the resolution limit
problem). Next, we overview several community quality metrics proposed to solve
the resolution limit problem and discuss Modularity Density (Qds) which
simultaneously avoids the two problems of modularity. Finally, we introduce two
novel fine-tuned community detection algorithms that iteratively attempt to
improve the community quality measurements by splitting and merging the given
network community structure. The first of them, referred to as Fine-tuned Q, is
based on modularity (Q) while the second one is based on Modularity Density
(Qds) and denoted as Fine-tuned Qds. Then, we compare the greedy algorithm of
modularity maximization (denoted as Greedy Q), Fine-tuned Q, and Fine-tuned Qds
on four real networks, and also on the classical clique network and the LFR
benchmark networks, each of which is instantiated by a wide range of
parameters. The results indicate that Fine-tuned Qds is the most effective
among the three algorithms discussed. Moreover, we show that Fine-tuned Qds can
be applied to the communities detected by other algorithms to significantly
improve their results
Extension of Modularity Density for Overlapping Community Structure
Modularity is widely used to effectively measure the strength of the disjoint
community structure found by community detection algorithms. Although several
overlapping extensions of modularity were proposed to measure the quality of
overlapping community structure, there is lack of systematic comparison of
different extensions. To fill this gap, we overview overlapping extensions of
modularity to select the best. In addition, we extend the Modularity Density
metric to enable its usage for overlapping communities. The experimental
results on four real networks using overlapping extensions of modularity,
overlapping modularity density, and six other community quality metrics show
that the best results are obtained when the product of the belonging
coefficients of two nodes is used as the belonging function. Moreover, our
experiments indicate that overlapping modularity density is a better measure of
the quality of overlapping community structure than other metrics considered.Comment: 8 pages in Advances in Social Networks Analysis and Mining (ASONAM),
2014 IEEE/ACM International Conference o
Extraction of Neutrino Flux with the Low Method at MiniBooNE Energies
We describe the application of the `low-' method to the extraction of
the neutrino flux at MiniBooNE energies. As an example, we extract the relative
energy dependence of the flux from published MiniBooNE quasielastic scattering
cross sections with GeV and GeV (here is the
energy transfer to the target). We find that the flux extracted from the
`low-' cross sections is consistent with the nominal flux used by
MiniBooNE. We fit the MiniBooNE cross sections over the entire kinematic range
to various parametrizations of the axial form factor. We find that if the
overall normalization of the fit is allowed to float within the normalization
errors, the extracted values of the axial vector mass are independent of the
flux. Within the Fermi gas model, the distribution of the MiniBooNE data
is described by a standard dipole form factor with GeV. If
nuclear transverse enhancement in the vector form factors is accounted for, the
data are best fit with a modified dipole form factor with
GeV.Comment: 5 pages, 6 figures, (presented by A. Bodek at CIPANP 2012, St.
Petersburg, FL, June 2012, and at NuFact 2012, Williamsburg, VA, July 2012
Charged lepton-nucleus inelastic scattering at high energies
The composite model is constructed to describe inelastic high-energy
scattering of muons and taus in standard rock. It involves photonuclear
interactions at low as well as moderate processes and the deep
inelastic scattering (DIS). In the DIS region the neutral current contribution
is taken into consideration. Approximation formulas both for the muons and tau
energy loss in standard rock are presented for wide energy range.Comment: 5 pages, 4 figures. Presented at 19th European Cosmic Ray Symposium
(ECRS 2004), Florence, Italy, 30 Aug - 3 Sep 2004. Submitted to
Int.J.Mod.Phys.
GZK photons as UHECR above 10 eV
"GZK photons" are produced by extragalactic nucleons through the resonant
photoproduction of pions. We present the expected range of the GZK photon
fraction of UHECR, assuming a particular UHECR spectrum and primary nucleons,
and compare it with the minimal photon fraction predicted by Top-Down models.Comment: Talk given at TAUP2005, Sept. 10-14 2005, Zaragoza (Spain); 3 pages,
2 figure
Neutrino-nucleon cross sections at energies of Megaton-scale detectors
An updated set of (anti)neutrino-nucleon charged and neutral current cross
sections at is presented.
These cross sections are of particular interest for the detector optimization
and data processing and interpretation in the future Megaton-scale experiments
like PINGU, ORCA, and Hyper-Kamiokande. Finite masses of charged leptons and
target mass corrections in exclusive and deep inelastic
interactions are taken into account. A new set of QCD NNLO parton density
functions, the ABMP15, is used for calculation of the DIS cross sections. The
sensitivity of the cross sections to phenomenological parameters and to
extrapolations of the nucleon structure functions to small and is
studied. An agreement within the uncertainties of our calculations with
experimental data is demonstrated.Comment: 4 pages, 4 figures, accepted for the VLVnT-2015 Conference
proceedings, will be published on EPJ Web of Conference
Axial, induced pseudoscalar, and pion-nucleon form factors in manifestly Lorentz-invariant chiral perturbation theory
We calculate the nucleon form factors G_A and G_P of the isovector
axial-vector current and the pion-nucleon form factor G_piN in manifestly
Lorentz-invariant baryon chiral perturbation theory up to and including order
O(p^4). In addition to the standard treatment including the nucleon and pions,
we also consider the axial-vector meson a_1 as an explicit degree of freedom.
This is achieved by using the reformulated infrared renormalization scheme. We
find that the inclusion of the axial-vector meson effectively results in one
additional low-energy coupling constant that we determine by a fit to the data
for G_A. The inclusion of the axial-vector meson results in an improved
description of the experimental data for G_A, while the contribution to G_P is
small.Comment: 21 pages, 9 figures, REVTeX
- …