19 research outputs found

    Functional illness in primary care: dysfunction versus disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Biopsychosocial Model aims to integrate the biological, psychological and social components of illness, but integration is difficult in practice, particularly when patients consult with medically unexplained physical symptoms or functional illness.</p> <p>Discussion</p> <p>This Biopsychosocial Model was developed from General Systems Theory, which describes nature as a dynamic order of interacting parts and processes, from molecular to societal. Despite such conceptual progress, the biological, psychological, social and spiritual components of illness are seldom managed as an integrated whole in conventional medical practice. This is because the biomedical model can be easier to use, clinicians often have difficulty relinquishing a disease-centred approach to diagnosis, and either dismiss illness when pathology has been excluded, or explain all undifferentiated illness in terms of psychosocial factors. By contrast, traditional and complementary treatment systems describe reversible functional disturbances, and appear better at integrating the different components of illness. Conventional medicine retains the advantage of scientific method and an expanding evidence base, but needs to more effectively integrate psychosocial factors into assessment and management, notably of 'functional' illness. As an aid to integration, pathology characterised by structural change in tissues and organs is contrasted with dysfunction arising from disordered physiology or psychology that may occur independent of pathological change.</p> <p>Summary</p> <p>We propose a classification of illness that includes orthogonal dimensions of pathology and dysfunction to support a broadly based clinical approach to patients; adoption of which may lead to fewer inappropriate investigations and secondary care referrals and greater use of cognitive behavioural techniques, particularly when managing functional illness.</p

    Medication misuse, abuse and dependence in chronic pain patients

    No full text
    We report the prevalence of drug use, misuse, abuse, and dependence in 125 chronic pain patients attending specialist pain clinics in South London. A total of 110 patients (88%) were taking medications for their pain problem. Opioid analgesics (69.6%), nonopioids (48%), antidepressants (25%), and benzodiazepines (17.6%) were the drugs most frequently used. Psychoactive substance abuse or dependence (DSM-III-R) was diagnosed in 12%. A total of 9.6% of the patients met the DSM-III-R criteria for substance abuse or dependence in remission. Data are also presented on the misuse and abuse of nonpsychoactive drugs, qualitative information on how patients use drugs, and the information they have received about medication. (C) 1997 Elsevier Science Inc.</p

    Cloning and purification of protein kinase CK2 recombinant alpha and beta subunits from the Mediterranean fly Ceratitis capitata

    No full text
    The Mediterranean fruit fly Ceratitis capitata is an insect capable of wreaking extensive damage to a wide range of fruit crops. Protein kinase CK2 is a ubiquitous Ser/Thr kinase that is highly conserved among eukaryotes; it is a heterotetramer composed of two catalytic (α) and a dimer of regulatory (β) subunits. We present here the construction of the cDNA molecules of the CK2α and CK2β subunits from the medfly C. capitata by the 5′/3′ RACE and RT-PCR methods, respectively. CcCK2α catalytic subunit presents the characteristic and conserved features of a typical protein kinase, similar to the regulatory CcCK2β subunit, that also possess the conserved features of regulatory CK2β subunits, as revealed by comparison of their predicted amino acid sequences with other eukaryotic species. The recombinant CcCK2α and CcCK2β proteins were purified by affinity chromatography to homogeneity, after overexpression in Escherichia coli. CcCK2α is capable to utilize GTP and its activity and is inhibited by polyanions and stimulated by polycations in phosphorylation assays, using purified acidic ribosomal protein P1 as a substrate. © Springer Science+Business Media, LLC. 2011
    corecore