231 research outputs found

    Observations of OI and CaII Emission Lines in Quasars: Implications for the Site of FeII Line Emission

    Get PDF
    We present results of the near-infrared (IR) spectroscopy of six quasars whose redshifts range from 0.158 to 1.084. Combined with the satellite ultraviolet data, the relative line strengths of OI 1304, OI 8446, OI 11287, and the near-IR CaII triplet are given. In addition, the corresponding OI line strengths measured in normal Seyfert 1s and narrow-line Seyfert 1s are collected from the literature. These lines are thought to emerge from the same gas as do the FeII lines, so they are good tracers of the FeII emission region within a broad emission line region (BELR) in active galactic nuclei (AGNs). In order to reveal the physical condition within the relevant emission region, we performed photoionized model calculations and compared them to the observations. It suggests that a rather dense gas with density nH ~ 10^(11.5) cm-3 is present at an outer portion of the BELR, illuminated by the ionizing radiation corresponding to an ionization parameter U ~ 10^(-2.5) and is primarily responsible for the observed OI, CaII, and FeII lines, based on the resemblance of their profiles. The three OI lines are proven to be formed through Ly beta fluorescence and collisional excitation. We also show that the lambda1304 bump typically observed in AGN spectra consists of the comparable contributions of OI and SiII multiplets, and we discuss the origin of such a strong SiII emission. The results are interpreted in the context of the locally optimally emitting cloud (LOC) scenario to find the plausible gas distribution within the BELR as a function of distance from the central source and density.Comment: Accepted for publication in ApJ; some rewordings mad

    Low-Ionization Emission Regions in Quasars: Gas Properties Probed with Broad O I and Ca II Lines

    Full text link
    We have compiled the emission-line fluxes of O I 8446, O I 11287, and the near-IR Ca II triplet (8579) observed in 11 quasars. These lines are considered to emerge from the same gas as do the Fe II lines in the low-ionized portion of the broad emission line region (BELR). The compiled quasars are distributed over wide ranges of redshift (0.06 < z < 1.08) and of luminosity (-29.8 < M_B < -22.1), thus representing a useful sample to investigate the line-emitting gas properties in various quasar environments. The measured line strengths and velocities, as functions of the quasar properties, are analyzed using photoionization model calculations. We found that the flux ratio between Ca II and O I 8446 is hardly dependent on the redshift or luminosity, indicating similar gas density in the emission region from quasar to quasar. On the other hand, a scatter of the O I 11287/8446 ratios appears to imply the diversity of the ionization parameter. These facts invoke a picture of the line-emitting gases in quasars that have similar densities and are located at regions exposed to various ionizing radiation fluxes. The observed O I line widths are found to be remarkably similar over more than 3 orders of magnitude in luminosity, which indicates a kinematically determined location of the emission region and is in clear contrast to the well-studied case of H I lines. We also argue about the dust presence in the emission region since the region is suggested to be located near the dust sublimation point at the outer edge of the BELR.Comment: Accepted for publication in ApJ; minor rewordings mad

    Derivation of a large isotropic diffuse sky emission component at 1.25 and 2.2um from the COBE/DIRBE data

    Full text link
    Using all-sky maps obtained with COBE/DIRBE, we reanalyzed the diffuse sky brightness at 1.25 and 2.2 um, which consists of zodiacal light, diffuse Galactic light (DGL), integrated starlight (ISL), and isotropic emission including the extragalactic background light. Our new analysis including an improved estimate of the DGL and the ISL with the 2MASS data showed that deviations of the isotropic emission from isotropy were less than 10% in the entire sky at high Galactic latitude (|b|>35). The result of our analysis revealed a significantly large isotropic component at 1.25 and 2.2 um with intensities of 60.15 +/- 16.14 and 27.68 +/- 6.21 nWm-2sr-1, respectively. This intensity is larger than the integrated galaxy light, upper limits from gamma-ray observation, and potential contribution from exotic sources (i.e., Population III stars, intrahalo light, direct collapse black holes, and dark stars). We therefore conclude that the excess light may originate from the local universe; the Milky Way and/or the solar system.Comment: ApJ accepte

    Optical to Near-IR Spectrum of a Massive Evolved Galaxy at z = 1.26

    Full text link
    We present the optical to near-infrared (IR) spectrum of the galaxy TSPS J1329-0957, a red and bright member of the class of extremely red objects (EROs) at z = 1.26. This galaxy was found in the course of the Tokyo-Stromlo Photometry Survey (TSPS) which we are conducting in the southern sky. The spectroscopic observations were carried out with the Gemini Multi-Object Spectrograph (GMOS) and the Gemini Near Infra-Red Spectrograph (GNIRS) mounted on the Gemini-South telescope. The wide wavelength coverage of 0.6 - 2.3 um provides useful clues as to the nature of EROs while most published spectra are limited to a narrower spectral range which is dictated by the need for efficient redshift determination in a large survey. We compare our spectrum with several optical composite spectra obtained in recent large surveys, and with stellar population synthesis models. The effectiveness of using near-IR broad-band data, instead of the spectral data, in deriving the galaxy properties are also investigated. We find that TSPS J1329-0957 formed when the universe was 2 - 3 Gyr old, and subsequently evolved passively to become one of the most massive galaxies found in the z = 1 - 2 universe. Its early type and estimated stellar mass of M* = 10^{11.5} Msun clearly point to this galaxy being a direct ancestor of the brightest elliptical and spheroidal galaxies in the local universe.Comment: 18 pages, 4 figures. Accepted for publication in Ap

    The detection and photometric redshift determination of distant galaxies using SIRTF's Infrared Array Camera

    Get PDF
    We investigate the ability of the Space Infrared Telescope Facility's Infrared Array Camera to detect distant (z ~ 3)galaxies and measure their photometric redshifts. Our analysis shows that changing the original long wavelength filter specifications provides significant improvements in performance in this and other areas.Comment: 28 pages incl 12 figures; to appear in June 1999 PASP. Fig.12 replaced with corrected versio

    Optical identification of ISO far-infrared sources in the Lockman Hole using a deep VLA 1.4 GHz continuum survey

    Get PDF
    By exploiting the far-infrared(FIR) and radio correlation, we have performed the Likelihood-Ratio analysis to identify optical counterparts to the far-infrared sources in the Lockman Hole. Using the likelihood ratio analysis and the associated reliability, 44 FIR sources have been identified with radio sources. Redshifts have been obtained for 29 out of 44 identified sources. One hyper-luminous infrared galaxy (HyLIRG) with and four ultraluminous infrared galaxies (ULIRGs) are identified in our sample. The space density of the FIR sources at z = 0.3-0.6 is 4.6\times 10^{-5}Mpc^{-3}, implying a rapid evolution of the ULIRG population. Most of \ISO FIR sources have their FIR-radio ratios similar to star-forming galaxies ARP 220 and M82. At least seven of our FIR sources show evidence for the presence of an active galactic nucleus (AGN) in optical emission lines, radio continuum excess, or X-ray activity. Three out of five (60%) of the ULIRG/HyLIRGs are AGN galaxies. Five of the seven AGN galaxies are within the ROSAT X-ray survey field, and two are within the XMM-Newton survey fields. X-ray emission has been detected in only one source, 1EX030, which is optically classified as a quasar. The non-detection in the XMM-Newton 2-10 keV band suggests a very thick absorption obscuring the central source of the two AGN galaxies. Several sources have an extreme FIR luminosity relative to the optical R-band, L(90\mu\mathrm{m})/L(R) > 500, which is rare even among the local ULIRG population. While source confusion or blending might offer an explanation in some cases, they may represent a new population of galaxies with an extreme activity of star formation in an undeveloped stellar system -- i.e., formation of bulges or young ellipticals.Comment: 55 pages, 16 figures. To appear in A

    ISO continuum observations of quasars at z=1-4 I.Spectral energy distributions of quasars from the UV to far-infrared

    Get PDF
    Eight luminous quasars with 30<MB<27 -30 < M_B < -27 at z = 1.4 - 3.7 have been observed in the mid- and far-infrared using ISO. All the quasars have been detected in the mid-infrared bands of ISOCAM, while no far-infrared detections have been made with ISOPHOT. Supplementing ISO observations with photometry in the optical and near-infrared made from the ground mostly within 17 months after the ISO observations, SEDs (Spectral Energy Distributions) from the UV to far-infrared have been obtained. SEDs (Spectral Energy Distributions) from the UV to far-infrared have been obtained while supplementing ISO observations with photometry in the optical and near-infrared made from the ground within 17 months. The SEDs are compared with the MED (Mean spectral Energy Distributions) of low-redshift quasars with 27<MB<22-27 < M_B < -22. It is shown that our far-infrared observations were limited by confusion noise due to crowded sources.Comment: 9 pages, 3 figures: accepted for publication in Astronomy and Astrophysic
    corecore