213 research outputs found

    Formation and decay dynamics of excitonic photoluminescence in a GaAs/AlGaAs superlattice under an electric field

    Get PDF
    Photoluminescence (PL) dynamics of localized excitons in a strongly coupled 40 Å/40 Å GaAs/Al0.2Ga0.8/As superlattice under an electric field along the growth direction is reported. At zero field, a delayed PL formation due to the relaxation of dark excitons into radiative states is observed. With increasing field, both the PL decay time and the PL amplitude are strongly reduced. A rate equation analysis of the measured PL transients gives evidence that the field‐induced dissociation of nonradiative excitons is important

    Collective modes and the broken symmetry of a rotating attractive Bose gas in an anharmonic trap

    Full text link
    We study the rotational properties of an attractively interacting Bose gas in a quadratic + quartic potential. The low-lying modes of both rotational ground state configurations, namely the vortex and the center of mass rotating states, are solved. The vortex excitation spectrum is positive for weak interactions but the lowest modes decrease rapidly to negative values when the interactions become stronger. The broken rotational symmetry involved in the center of mass rotating state induces the appearance of an extra zero-energy mode in the Bogoliubov spectrum. The excitations of the center of mass rotational state also demonstrate the coupling between the center of mass and relative motions.Comment: 4 pages, 3 eps figures (2 in color) v2: changes in Title, all figures, in text (especially in Sec III) and in Reference

    Quantization with Action-Angle Coherent States

    Full text link
    For a single degree of freedom confined mechanical system with given energy, we know that the motion is always periodic and action-angle variables are convenient choice as conjugate phase-space variables. We construct action-angle coherent states in view to provide a quantization scheme that yields precisely a given observed energy spectrum En{E_n} for such a system. This construction is based on a Bayesian approach: each family corresponds to a choice of probability distributions such that the classical energy averaged with respect to this probability distribution is precisely EnE_n up to a constant shift. The formalism is viewed as a natural extension of the Bohr-Sommerfeld rule and an alternative to the canonical quantization. In particular, it also yields a satisfactory angle operator as a bounded self-adjoint operator

    Cavity Optomechanical Sensing and Manipulation of an Atomic Persistent Current

    Get PDF
    This theoretical work initiates contact between two frontier disciplines of physics, namely, atomic superfluid rotation and cavity optomechanics. It considers an annular Bose-Einstein condensate, which exhibits dissipationless flow and is a paradigm of rotational quantum physics, inside a cavity excited by optical fields carrying orbital angular momentum. It provides the first platform that can sense ring Bose-Einstein condensate rotation with minimal destruction, in situ and in real time, unlike demonstrated techniques, all of which involve fully destructive measurement. It also shows how light can actively manipulate rotating matter waves by optomechanically entangling persistent currents. Our work opens up a novel and useful direction in the sensing and manipulation of atomic superflow

    Localization of solitons: linear response of the mean-field ground state to weak external potentials

    Full text link
    Two aspects of bright matter-wave solitons in weak external potentials are discussed. First, we briefly review recent results on the Anderson localization of an entire soliton in disordered potentials [Sacha et al. PRL 103, 210402 (2009)], as a paradigmatic showcase of genuine quantum dynamics beyond simple perturbation theory. Second, we calculate the linear response of the mean-field soliton shape to a weak, but otherwise arbitrary external potential, with a detailed application to lattice potentials.Comment: Selected paper presented at the 2010 Spring Meeting of the Quantum Optics and Photonics Section of the German Physical Society. V2: minor changes, published versio

    Persistent currents in a Bose-Einstein condensate in the presence of disorder

    Full text link
    We examine bosonic atoms that are confined in a toroidal, quasi-one-dimensional trap, subjected to a random potential. The resulting inhomogeneous atomic density is smoothened for sufficiently strong, repulsive interatomic interactions. Statistical analysis of our simulations show that the gas supports persistent currents, which become more fragile due to the disorder.Comment: 5 pages, RevTex, 3 figures, revised version, to appear in JLT

    Macroscopic superposition states of ultracold bosons in a double-well potential

    Full text link
    We present a thorough description of the physical regimes for ultracold bosons in double wells, with special attention paid to macroscopic superpositions (MSs). We use a generalization of the Lipkin-Meshkov-Glick Hamiltonian of up to eight single particle modes to study these MSs, solving the Hamiltonian with a combination of numerical exact diagonalization and high-order perturbation theory. The MS is between left and right potential wells; the extreme case with all atoms simultaneously located in both wells and in only two modes is the famous NOON state, but our approach encompasses much more general MSs. Use of more single particle modes brings dimensionality into the problem, allows us to set hard limits on the use of the original two-mode LMG model commonly treated in the literature, and also introduces a new mixed Josephson-Fock regime. Higher modes introduce angular degrees of freedom and MS states with different angular properties.Comment: 15 pages, 8 figures, 1 table. Mini-review prepared for the special issue of Frontiers of Physics "Recent Progresses on Quantum Dynamics of Ultracold Atoms and Future Quantum Technologies", edited by Profs. Lee, Ueda, and Drummon

    Theory of Multidimensional Solitons

    Full text link
    We review a number of topics germane to higher-dimensional solitons in Bose-Einstein condensates. For dark solitons, we discuss dark band and planar solitons; ring dark solitons and spherical shell solitons; solitary waves in restricted geometries; vortex rings and rarefaction pulses; and multi-component Bose-Einstein condensates. For bright solitons, we discuss instability, stability, and metastability; bright soliton engineering, including pulsed atom lasers; solitons in a thermal bath; soliton-soliton interactions; and bright ring solitons and quantum vortices. A thorough reference list is included.Comment: review paper, to appear as Chapter 5a in "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag
    • 

    corecore