161 research outputs found
Influence of vortex-vortex interaction on critical currents across low-angle grain boundaries in YBa2Cu3O7-delta thin films
Low-angle grain boundaries with misorientation angles theta < 5 degrees in
optimally doped thin films of YBCO are investigated by magnetooptical imaging.
By using a numerical inversion scheme of Biot-Savart's law the critical current
density across the grain boundary can be determined with a spatial resolution
of about 5 micrometers. Detailed investigation of the spatially resolved flux
density and current density data shows that the current density across the
boundary varies with varying local flux density. Combining the corresponding
flux and current pattern it is found that there exists a universal dependency
of the grain boundary current on the local flux density. A change in the local
flux density means a variation in the flux line-flux line distance. With this
knowledge a model is developped that explains the flux-current relation by
means of magnetic vortex-vortex interaction.Comment: 7 pages, 14 figure
Exact analytical solution of the problem of current-carrying states of the Josephson junction in external magnetic fields
The classical problem of the Josephson junction of arbitrary length W in the
presence of externally applied magnetic fields (H) and transport currents (J)
is reconsidered from the point of view of stability theory. In particular, we
derive the complete infinite set of exact analytical solutions for the phase
difference that describe the current-carrying states of the junction with
arbitrary W and an arbitrary mode of the injection of J. These solutions are
parameterized by two natural parameters: the constants of integration. The
boundaries of their stability regions in the parametric plane are determined by
a corresponding infinite set of exact functional equations. Being mapped to the
physical plane (H,J), these boundaries yield the dependence of the critical
transport current Jc on H. Contrary to a wide-spread belief, the exact
analytical dependence Jc=Jc(H) proves to be multivalued even for arbitrarily
small W. What is more, the exact solution reveals the existence of unquantized
Josephson vortices carrying fractional flux and located near one of the
junction edges, provided that J is sufficiently close to Jc for certain finite
values of H. This conclusion (as well as other exact analytical results) is
illustrated by a graphical analysis of typical cases.Comment: 21 pages, 9 figures, to be published in Phys. Rev.
Current density inhomogeneity throughout the thickness of superconducting films and its effect on their irreversible magnetic properties
We calculate the distribution of the current density in superconducting
films along the direction of an external field applied perpendicular to the
film plane. Our analysis reveals that in the presence of bulk pinning is
inhomogeneous on a length scale of order the inter vortex distance. This
inhomogeneity is significantly enhanced in the presence of surface pinning. We
introduce new critical state model, which takes into account the current
density variations throughout the film thickness, and show how these variations
give rise to the experimentally observed thickness dependence of and
magnetic relaxation rate.Comment: RevTex, 9 PS figures. To appear in Phys. Rev.
Anisotropic, non-monotonic behavior of the superconducting critical current in thin YBa2Cu3O7-d films on vicinal SrTiO3 surfaces
The critical current density of epitaxial YBCO films grown on vicinal SrTiO3
substrates was investigated by electrical transport measurements along and
across the steps of the SrTiO3 surface for a range of temperatures of 10 K to
85 K and in applied magnetic fields varying from 0 to 14 T. For vicinal angles
of 4 and 8 degrees, we found evidence of enhanced pinning in the longitudinal
direction at low magnetic fields for a wide region of temperatures and
attribute this phenomenon to anti-phase boundaries in the YBCO film. The
transverse Jc data showed a peak in the Jc(H) curve at low magnetic fields,
which was explained on the basis of magnetic interaction between Abrikosov and
Abrikosov-Josephson vortices. The in-plane Jc anisotropy observed for vicinal
angles of 0.4 degrees was reversed with respect to the 8 degree and 4 degree
samples. This phenomenon was interpreted on the basis of strain induced in the
YBCO film by the stepped substrate's surface.Comment: accepted for publication in Phys. Rev.
Local threshold field for dendritic instability in superconducting MgB2 films
Using magneto-optical imaging the phenomenon of dendritic flux penetration in
superconducting films was studied. Flux dendrites were abruptly formed in a 300
nm thick film of MgB2 by applying a perpendicular magnetic field. Detailed
measurements of flux density distributions show that there exists a local
threshold field controlling the nucleation and termination of the dendritic
growth. At 4 K the local threshold field is close to 12 mT in this sample,
where the critical current density is 10^7 A/cm^2. The dendritic instability in
thin films is believed to be of thermo-magnetic origin, but the existence of a
local threshold field, and its small value are features that distinctly
contrast the thermo-magnetic instability (flux jumps) in bulk superconductors.Comment: 6 pages, 6 figures, submitted to Phys. Rev.
Strong Pinning in High Temperature Superconductors
Detailed measurements of the critical current density jc of YBa2Cu3O7 films
grown by pulsed laser deposition reveal the increase of jc as function of the
filmthickness. Both this thickness dependence and the field dependence of the
critical current are consistently described using a generalization of the
theory of strong pinning of Ovchinnikov and Ivlev [Phys. Rev. B 43, 8024
(1991)]. From the model, we deduce values of the defect density (10^21 m^-3)
and the elementary pinning force, which are in good agreement with the
generally accepted values for Y2O3-inclusions. In the absence of clear evidence
that the critical current is determined by linear defects or modulations of the
film thickness, our model provides an alternative explanation for the rather
universal field dependence of the critical current density found in YBa2Cu3O7
films deposited by different methods.Comment: 11 pages; 8 Figures; Published Phys. Rev. B 66, 024523 (2002
Dynamics of the magnetic flux trapped in fractal clusters of normal phase in a superconductor
The influence of geometry and morphology of superconducting structure on
critical currents and magnetic flux trapping in percolative type-II
superconductor is considered. The superconductor contains the clusters of a
normal phase, which act as pinning centers. It is found that such clusters have
significant fractal properties. The main features of these clusters are studied
in detail: the cluster statistics is analyzed; the fractal dimension of their
boundary is estimated; the distribution of critical currents is obtained, and
its peculiarities are explored. It is examined thoroughly how the finite
resolution capacity of the cluster geometrical size measurement affects the
estimated value of fractal dimension. The effect of fractal properties of the
normal phase clusters on the electric field arising from magnetic flux motion
is investigated in the case of an exponential distribution of cluster areas.
The voltage-current characteristics of superconductors in the resistive state
for an arbitrary fractal dimension are obtained. It is revealed that the
fractality of the boundaries of the normal phase clusters intensifies the
magnetic flux trapping and thereby raises the critical current of a
superconductor.Comment: revtex, 16 pages with 1 table and 5 figures; text and figures are
improved; more detailed version with geometric probability analisys of the
distribution of entry points into weak links over the perimeter of a normal
phase clusters and one additional figure is published in Phys.Rev.B;
alternative e-mail of author is [email protected]
Resolution of two-dimensional Currents in Superconductors from a two-dimensional magnetic field measurement by the method of regularization
The problem of reconstructing a two-dimensional (2D) current distribution in
a superconductor from a 2D magnetic field measurement is recognized as a
first-kind integral equation and resolved using the method of Regularization.
Regularization directly addresses the inherent instability of this inversion
problem for non-exact (noisy) data. Performance of the technique is evaluated
for different current distributions and for data with varying amounts of added
noise. Comparisons are made to other methods, and the present method is
demonstrated to achieve a better regularizing (noise filtering) effect while
also employing the generalized-cross validation (GCV) method to choose the
optimal regularization parameter from the data, without detailed knowledge of
the true (and generally unknown) solution. It is also shown that clean,
noiseless data is an ineffective test of an inversion algorithm.Comment: To appear in the Physical Review B. Some text/figure additions and
modification
MicroRNA-377 suppresses initiation and progression of esophageal cancer by inhibiting CD133 and VEGF
published_or_final_versio
A proinflammatory stem cell niche drives myelofibrosis through a targetable galectin-1 axis
Myeloproliferative neoplasms are stem cell-driven cancers associated with a large burden of morbidity and mortality. Most patients present with early-stage disease, but a substantial proportion progress to myelofibrosis or secondary leukemia, advanced cancers with a poor prognosis and high symptom burden. Currently, it remains difficult to predict progression, and therapies that reliably prevent or reverse fibrosis are lacking. A major bottleneck to the discovery of disease-modifying therapies has been an incomplete understanding of the interplay between perturbed cellular and molecular states. Several cell types have individually been implicated, but a comprehensive analysis of myelofibrotic bone marrow is lacking. We therefore mapped the cross-talk between bone marrow cell types in myelofibrotic bone marrow. We found that inflammation and fibrosis are orchestrated by a "quartet" of immune and stromal cell lineages, with basophils and mast cells creating a TNF signaling hub, communicating with megakaryocytes, mesenchymal stromal cells, and proinflammatory fibroblasts. We identified the β-galactoside-binding protein galectin-1 as a biomarker of progression to myelofibrosis and poor survival in multiple patient cohorts and as a promising therapeutic target, with reduced myeloproliferation and fibrosis in vitro and in vivo and improved survival after galectin-1 inhibition. In human bone marrow organoids, TNF increased galectin-1 expression, suggesting a feedback loop wherein the proinflammatory myeloproliferative neoplasm clone creates a self-reinforcing niche, fueling progression to advanced disease. This study provides a resource for studying hematopoietic cell-niche interactions, with relevance for cancer-associated inflammation and disorders of tissue fibrosis
- …