49 research outputs found

    Speedup of quantum state transfer by three- qubit interactions: Implementation by nuclear magnetic resonance

    Full text link
    Universal quantum information processing requires single-qubit rotations and two-qubit interactions as minimal resources. A possible step beyond this minimal scheme is the use of three-qubit interactions. We consider such three-qubit interactions and show how they can reduce the time required for a quantum state transfer in an XY spin chain. For the experimental implementation, we use liquid-state nuclear magnetic resonance (NMR), where three-qubit interactions can be implemented by sequences of radio-frequency pulses.Comment: Comments are welcome to [email protected] or [email protected]. More experimental results are adde

    Realization of generalized quantum searching using nuclear magnetic resonance

    Full text link
    According to the theoretical results, the quantum searching algorithm can be generalized by replacing the Walsh-Hadamard(W-H) transform by almost any quantum mechanical operation. We have implemented the generalized algorithm using nuclear magnetic resonance techniques with a solution of chloroform molecules. Experimental results show the good agreement between theory and experiment.Comment: 11 pages,3 figure. Accepted by Phys. Rev. A. Scheduled Issue: 01 Mar 200

    Simulation of a Heisenberg XY- chain and realization of a perfect state transfer algorithm using liquid nuclear magnetic resonance

    Full text link
    The three- spin chain with Heisenberg XY- interaction is simulated in a three- qubit nuclear magnetic resonance (NMR) quantum computer. The evolution caused by the XY- interaction is decomposed into a series of single- spin rotations and the JJ- coupling evolutions between the neighboring spins. The perfect state transfer (PST) algorithm proposed by M. Christandl et al [Phys. Rev. Lett, 92, 187902(2004)] is realized in the XY- chain

    Direct observation of quantum criticality in Ising spin chains

    Full text link
    We use NMR quantum simulators to study antiferromagnetic Ising spin chains undergoing quantum phase transitions. Taking advantage of the sensitivity of the systems near criticality, we detect the critical points of the transitions using a direct measurement of the Loschmidt echo. We test our simulators for spin chains of even and odd numbers of spins, and compare the experimental results to theoretical predictions

    Modularization of multi-qubit controlled phase gate and its NMR implementation

    Full text link
    Quantum circuit network is a set of circuits that implements a certain computation task. Being at the center of the quantum circuit network, the multi-qubit controlled phase shift is one of the most important quantum gates. In this paper, we apply the method of modular structuring in classical computer architecture to quantum computer and give a recursive realization of the multi-qubit phase gate. This realization of the controlled phase shift gate is convenient in realizing certain quantum algorithms. We have experimentally implemented this modularized multi-qubit controlled phase gate in a three qubit nuclear magnetic resonance quantum system. The network is demonstrated experimentally using line selective pulses in nuclear magnetic resonance technique. The procedure has the advantage of being simple and easy to implement.Comment: to appear in Journal of Optics B: Quantum and Semiclassical Optic

    Optimal photon energies for initialization of hybrid spin quantum registers of NV centers in diamond

    No full text
    Initializing quantum registers with high fidelity is a fundamental precondition for many applications like quantum information processing and sensing. The electronic and nuclear spins of a Nitrogen-Vacancy (NV) center in diamond form an interesting hybrid quantum register that can be initialized by a combination of laser, microwave, and radio-frequency pulses. However, the laser illumination, which is necessary for achieving electron spin polarization, also has the unwanted sideeffect of depolarizing the nuclear spin. Here, we study how the depolarization dynamics of the 14N nuclear spin depends on the laser wavelength. We show experimentally that excitation with an orange laser (594 nm) causes signifficantly less nuclear spin depolarization compared to the green laser (532 nm) typically used for excitation and hence leads to higher nuclear spin polarization. This could be because orange light excitation inhibits ionization of NV^0 into NV^_ and therefore suppresses one source of noise acting on the nuclear spin
    corecore