1,727 research outputs found
Membranous glomerulonephritis in the mouse
Membranous glomerulonephritis in the mouse. Glomerulonephritis was induced in C57.B110 mice by a single injection of rabbit IgG against homologous, pronase-digested, renal tubular antigens. The heterologous phase was characterized by a transient increase of glomerular permeability with fixation of rabbit IgG to the capillary walls, in a linear or fine-granular pattern, and to the brush borders of the proximal tubuli. The autologous phase was marked by the immune response to the injected protein, during which subepithelial immune deposits, consisting of mouse IgG1, rabbit IgG, and mouse C3 developed. Small amounts were still present at 1 year after the injection of antiserum. The antibody response of the mice correlated with the development and resolution of the deposits. None of the mice developed a nephrotic syndrome. Control mice treated with normal rabbit IgG did not show immune deposits in their kidneys at any stage despite a comparable antibody response to rabbit IgG. Immunoelectronmicroscopy showed that the rabbit antibodies fixed directly to an antigen in the cell membrane of the glomerular visceral epithelium. It seems, therefore, likely that in situ formation of subepithelial immune complexes occurred in the autologous phase by fixation of mouse immunoglobulins to rabbit IgG already present in the glomerular wall.Glomérulonéphrite extra-membraneuse chez la souris. Une glomérulonéphrite a été induite chez des souris C57.B110 par une injection unique d'IgG de lapin contre des antigènes tubulaires rénaux homologues, digérés par de la pronase. La phase hétérologue était caractérisée par une augmentation transitoire de la perméabilité glomérulaire avec fixation d'IgG de lapin aux parois capillaires, d'une façon linéaire ou finement granuleuse, et aux bordures en brosse des tubules proximaux. La phase autologue était marquée par la réponse immune à la protéine injectée, pendant laquelle des dépôts immuns sous-épithéliaux, consistant en de l'IgG1 de souris, de l'IgG de lapin et du C3 de souris, se sont développés. Il en restait encore de faibles quantités 1 an après l'injection de l'antisérum. La réponse anticorps des souris était corrélée avec le développement et la disparition des dépôts. Aucune des souris n'a développé de syndrome néphrotique. Les souris contrôles traitées avec de l'IgG de lapin normal n'ont pas eu de dépôts immuns dans le rein à aucun stade, malgré une réponse anticorps aux IgG de lapin comparable. La microscopie immuno-électronique a montré que les anticorps de lapin se fixaient directement à un antigène situé sur la membrane des cellules de l'épithélium viscéral glomérulaire. Il semble donc probable que la formation in situ de complexes immuns sous-épithéliaux est survenue à la phase autologue par fixation d'immunoglobulines de souris à de l'IgG de lapin déjà présente dans la paroi glomérulaire
Chirp mitigation of plasma-accelerated beams using a modulated plasma density
Plasma-based accelerators offer the possibility to drive future compact light
sources and high-energy physics applications. Achieving good beam quality,
especially a small beam energy spread, is still one of the major challenges.
For stable transport, the beam is located in the focusing region of the
wakefield which covers only the slope of the accelerating field. This, however,
imprints a longitudinal energy correlation (chirp) along the bunch. Here, we
propose an alternating focusing scheme in the plasma to mitigate the
development of this chirp and thus maintain a small energy spread
Classifying oceanographic structures in the Amundsen Sea, Antarctica
Funding: The TARSAN project was funded by the U.S. National Science Foundation, Office of Polar Programs (Grant #1738992) and the UK Natural Environment Research Council (NERC, NE/S006591/1). I.R. was supported by the National Science Foundation’s Southern Ocean Carbon and Climate Observations and Modeling SOCCOM) project under NSF Award PLR-1425989, with additional support from NOAA and NASA.The remote and often ice‐covered Amundsen Sea Embayment in Antarctica is important for transporting relatively warm modified Circumpolar Deep Water (mCDW) to the Western Antarctic Ice Sheet, potentially accelerating its thinning and contribution to sea level rise. To investigate potential pathways and variability of mCDW, 3809 CTD profiles (instrumented seal and ship‐based data) are classified using a machine learning approach (Profile Classification Model). Five vertical regimes are identified, and areas of larger variability highlighted. Three spatial regimes are captured: Off‐Shelf, Eastern and Central Troughs. The on‐shelf profiles further show a separation between cold and warm modes. The variability is higher north of Burke Island and at the southern end of the Eastern Trough, which reflects the convergence of different mCDW pathways between the Eastern and the Central Trough. Finally, a clear but variable clockwise circulation is identified in Pine Island Bay.Publisher PDFPeer reviewe
The First 1 1/2 Years of TOTEM Roman Pot Operation at LHC
Since the LHC running season 2010, the TOTEM Roman Pots (RPs) are fully
operational and serve for collecting elastic and diffractive proton-proton
scattering data. Like for other moveable devices approaching the high intensity
LHC beams, a reliable and precise control of the RP position is critical to
machine protection. After a review of the RP movement control and position
interlock system, the crucial task of alignment will be discussed.Comment: 3 pages, 6 figures; 2nd International Particle Accelerator Conference
(IPAC 2011), San Sebastian, Spain; contribution MOPO01
Testing the Higgs Mechanism in the Lepton Sector with multi-TeV e+e- Collisions
Multi-TeV e+e- collisions provide with a large enough sample of Higgs bosons
to enable measurements of its suppressed decays. Results of a detailed study of
the determination of the muon Yukawa coupling at 3 TeV, based on full detector
simulation and event reconstruction, are presented. The muon Yukawa coupling
can be determined with a relative accuracy of 0.04 to 0.08 for Higgs bosons
masses from 120 GeV to 150 GeV, with an integrated luminosity of 5 inverse-ab.
The result is not affected by overlapping two-photon background.Comment: 6 pages, 2 figures, submitted to J Phys G.: Nucl. Phy
A High Luminosity e+e- Collider to study the Higgs Boson
A strong candidate for the Standard Model Scalar boson, H(126), has been
discovered by the Large Hadron Collider (LHC) experiments. In order to study
this fundamental particle with unprecedented precision, and to perform
precision tests of the closure of the Standard Model, we investigate the
possibilities offered by An e+e- storage ring collider. We use a design
inspired by the B-factories, taking into account the performance achieved at
LEP2, and imposing a synchrotron radiation power limit of 100 MW. At the most
relevant centre-of-mass energy of 240 GeV, near-constant luminosities of 10^34
cm^{-2}s^{-1} are possible in up to four collision points for a ring of 27km
circumference. The achievable luminosity increases with the bending radius, and
for 80km circumference, a luminosity of 5 10^34 cm^{-2}s^{-1} in four collision
points appears feasible. Beamstrahlung becomes relevant at these high
luminosities, leading to a design requirement of large momentum acceptance both
in the accelerating system and in the optics. The larger machine could reach
the top quark threshold, would yield luminosities per interaction point of
10^36 cm^{-2}s^{-1} at the Z pole (91 GeV) and 2 10^35 cm^{-2}s^{-1} at the W
pair production threshold (80 GeV per beam). The energy spread is reduced in
the larger ring with respect to what is was at LEP, giving confidence that beam
polarization for energy calibration purposes should be available up to the W
pair threshold. The capabilities in term of physics performance are outlined.Comment: Submitted to the European Strategy Preparatory Group 01-04-2013 new
version as re-submitted to PRSTA
Unparticle Searches Through Compton Scattering
We investigate the effects of unparticles on Compton scattering, e gamma -> e
gamma based on a future e^+e^- linear collider such as the CLIC. For different
polarization configurations, we calculate the lower limits of the unparticle
energy scale Lambda_U for a discovery reach at the center of mass energies
sqrt(s)=0.5 TeV- 3 TeV. It is shown that, especially, for smaller values of the
mass dimension d, (1 <d <1.3), and for high energies and luminosities of the
collider these bounds are very significant. As a stringent limit, we find
Lambda_U>80 TeV for d<1.3 at sqrt(s)=3 TeV, and 1 ab^(-1) integrated luminosity
per year, which is comparable with the limits calculated from other low and
high energy physics implications.Comment: Table 1 and 2 have been combined as Table 1, references updated,
minor typos have been correcte
- …