15,657 research outputs found

    Momentum-resolved charge excitations in high-Tc cuprates studied by resonant inelastic x-ray scattering

    Full text link
    We report a Cu K-edge resonant inelastic x-ray scattering (RIXS) study of high-Tc cuprates. Momentum-resolved charge excitations in the CuO2 plane are examined from parent Mott insulators to carrier-doped superconductors. The Mott gap excitation in undoped insulators is found to commonly show a larger dispersion along the [pi,pi] direction than the [pi,0] direction. On the other hand, the resonance condition displays material dependence. Upon hole doping, the dispersion of the Mott gap excitation becomes weaker and an intraband excitation appears as a continuum intensity below the gap at the same time. In the case of electron doping, the Mott gap excitation is prominent at the zone center and a dispersive intraband excitation is observed at finite momentum transfer

    High efficiency dark-to-bright exciton conversion in carbon nanotubes

    Full text link
    We report that dark excitons can have a large contribution to the emission intensity in carbon nanotubes due to an efficient exciton conversion from a dark state to a bright state. Time-resolved photoluminescence measurements are used to investigate decay dynamics and diffusion properties of excitons, and we obtain intrinsic lifetimes and diffusion lengths of bright excitons as well as diffusion coefficients for both bright and dark excitons. We find that the dark-to-bright transition rates can be considerably high, and that more than half of the dark excitons can be transformed into the bright excitons. The state transition rates have a large chirality dependence with a family pattern, and the conversion efficiency is found to be significantly enhanced by adsorbed air molecules on the surface of the nanotubes. Our findings show the nontrivial significance of the dark excitons on the emission kinetics in low dimensional materials, and demonstrate the potential for engineering the dark-to-bright conversion process by using surface interactions.Comment: 7 pages, 4 figure

    Single carbon nanotubes as ultrasmall all-optical memories

    Full text link
    Performance improvements are expected from integration of photonic devices into information processing systems, and in particular, all-optical memories provide a key functionality. Scaling down the size of memory elements is desirable for high-density integration, and the use of nanomaterials would allow for devices that are significantly smaller than the operation wavelengths. Here we report on all-optical memory based on individual carbon nanotubes, where adsorbed molecules give rise to optical bistability. By exciting at the high-energy tail of the excitonic absorption resonance, nanotubes can be switched between the desorbed state and the adsorbed state. We demonstrate reversible and reproducible operation of the nanotube optical memory, and determine the rewriting speed by measuring the molecular adsorption and desorption times. Our results underscore the impact of molecular-scale effects on optical properties of nanomaterials, offering new design strategies for photonic devices that are a few orders of magnitude smaller than the optical diffraction limit.Comment: 8 pages, 6 figure

    Survival of charmonia above Tc in anisotropic lattice QCD

    Full text link
    We find a strong evidence for the survival of J/ΨJ/\Psi and ηc\eta_c as spatially-localized ccˉc\bar c (quasi-)bound states above the QCD critical temperature TcT_c, by investigating the boundary-condition dependence of their energies and spectral functions. In a finite-volume box, there arises a boundary-condition dependence for spatially spread states, while no such dependence appears for spatially compact states. In lattice QCD, we find almost {\it no} spatial boundary-condition dependence for the energy of the ccˉc\bar c system in J/ΨJ/\Psi and ηc\eta_c channels for T≃(1.11−2.07)TcT\simeq(1.11-2.07)T_c. We also investigate the spectral function of charmonia above TcT_c in lattice QCD using the maximum entropy method (MEM) in terms of the boundary-condition dependence. There is {\it no} spatial boundary-condition dependence for the low-lying peaks corresponding to J/ΨJ/\Psi and ηc\eta_c around 3GeV at 1.62Tc1.62T_c. These facts indicate the survival of J/ΨJ/\Psi and ηc\eta_c as compact ccˉc\bar c (quasi-)bound states for Tc<T<2TcT_c < T < 2T_c.Comment: 4 pages, 1 figur
    • …
    corecore