33 research outputs found

    Isothermal Amplification Using a Chemical Heating Device for Point-of-Care Detection of HIV-1

    Get PDF
    Background: To date, the use of traditional nucleic acid amplification tests (NAAT) for detection of HIV-1 DNA or RNA has been restricted to laboratory settings due to time, equipment, and technical expertise requirements. The availability of a rapid NAAT with applicability for resource-limited or point-of-care (POC) settings would fill a great need in HIV diagnostics, allowing for timely diagnosis or confirmation of infection status, as well as facilitating the diagnosis of acute infection, screening and evaluation of infants born to HIV-infected mothers. Isothermal amplification methods, such as reversetranscription, loop-mediated isothermal amplification (RT-LAMP), exhibit characteristics that are ideal for POC settings, since they are typically quicker, easier to perform, and allow for integration into low-tech, portable heating devices. Methodology/Significant Findings: In this study, we evaluated the HIV-1 RT-LAMP assay using portable, non-instrumented nucleic acid amplification (NINA) heating devices that generate heat from the exothermic reaction of calcium oxide and water. The NINA heating devices exhibited stable temperatures throughout the amplification reaction and consistent amplification results between three separate devices and a thermalcycler. The performance of the NINA heaters was validated using whole blood specimens from HIV-1 infected patients. Conclusion: The RT-LAMP isothermal amplification method used in conjunction with a chemical heating device provides

    Invasion by human herpesvirus 6 and human herpesvirus 7 of the central nervous system in patients with neurological signs and symptoms

    No full text
    METHODS—A total of 43 children with neurological signs and symptoms were enrolled in the study. All children were suspected of having meningitis, and lumbar punctures were performed. Human herpesvirus 6 (HHV-6) and HHV-7 DNA was detected in cerebrospinal fluid (CSF) and peripheral blood mononuclear cells (PBMC) by nested polymerase chain reaction.
RESULTS—Most patients had detectable serum antibody to both HHV6 and 7. HHV6 DNA was detected in PBMC of 15 patients and in CSF cell pellet of seven. Corresponding figures for HHV7 were 28 and 6.2/7, and 5/6 with CSF viral DNA also had it in PBMC, respectively. No viral DNA was detected in CSF supernatants. The seven HHV6 CSF viruses were all variant B.
CONCLUSION—These data suggest that HHV-7 may invade the CNS.

    corecore