1,590 research outputs found
Unambiguous state discrimination in quantum cryptography with weak coherent states
The use of linearly independent signal states in realistic implementations of
quantum key distribution (QKD) enables an eavesdropper to perform unambiguous
state discrimination. We explore quantitatively the limits for secure QKD
imposed by this fact taking into account that the receiver can monitor to some
extend the photon number statistics of the signals even with todays standard
detection schemes. We compare our attack to the beamsplitting attack and show
that security against beamsplitting attack does not necessarily imply security
against the attack considered here.Comment: 10 pages, 6 figures, updated version with added discussion of
beamsplitting attac
Estimates for practical quantum cryptography
In this article I present a protocol for quantum cryptography which is secure
against attacks on individual signals. It is based on the Bennett-Brassard
protocol of 1984 (BB84). The security proof is complete as far as the use of
single photons as signal states is concerned. Emphasis is given to the
practicability of the resulting protocol. For each run of the quantum key
distribution the security statement gives the probability of a successful key
generation and the probability for an eavesdropper's knowledge, measured as
change in Shannon entropy, to be below a specified maximal value.Comment: Authentication scheme corrected. Other improvements of presentatio
Interference in dielectrics and pseudo-measurements
Inserting a lossy dielectric into one arm of an interference experiment acts
in many ways like a measurement. If two entangled photons are passed through
the interferometer, a certain amount of information is gained about which path
they took, and the interference pattern in a coincidence count measurement is
suppressed. However, by inserting a second dielectric into the other arm of the
interferometer, one can restore the interference pattern. Two of these
pseudo-measurements can thus cancel each other out. This is somewhat analogous
to the proposed quantum eraser experiments.Comment: 7 pages RevTeX 3.0 + 2 figures (postscript). Submitted to Phys. Rev.
Conditional beam splitting attack on quantum key distribution
We present a novel attack on quantum key distribution based on the idea of
adaptive absorption [calsam01]. The conditional beam splitting attack is shown
to be much more efficient than the conventional beam spitting attack, achieving
a performance similar to the, powerful but currently unfeasible, photon number
splitting attack. The implementation of the conditional beam splitting attack,
based solely on linear optical elements, is well within reach of current
technology.Comment: Submitted to Phys. Rev.
Coherent pulse implementations of quantum cryptography protocols resistant to photon number splitting attacks
A new class of quantum cryptography (QC) protocols that are robust against
the most general photon number splitting attacks in a weak coherent pulse
implementation has been recently proposed. In this article we give a quite
exhaustive analysis of several eavesdropping attacks on these schemes. The
eavesdropper (Eve) is supposed to have unlimited technological power while the
honest parties (Alice and Bob) use present day technology, in particular an
attenuated laser as an approximation of a single-photon source. They exploit
the nonorthogonality of quantum states for decreasing the information
accessible to Eve in the multi-photon pulses accidentally produced by the
imperfect source. An implementation of some of these protocols using present
day technology allow for a secure key distribution up to distances of
150 km. We also show that strong-pulse implementations, where a strong pulse is
included as a reference, allow for key distribution robust against photon
number splitting attacks.Comment: 16 pages, 11 figure
Transport, Metabolism, and Function of Thyroid Hormones in the Developing Mammalian Brain
Ever since the discovery of thyroid hormone deficiency as the primary cause of cretinism in the second half of the 19th century, the crucial role of thyroid hormone (TH) signaling in embryonic brain development has been established. However, the biological understanding of TH function in brain formation is far from complete, despite advances in treating thyroid function deficiency disorders. The pleiotropic nature of TH action makes it difficult to identify and study discrete roles of TH in various aspect of embryogenesis, including neurogenesis and brain maturation. These challenges notwithstanding, enormous progress has been achieved in understanding TH production and its regulation, their conversions and routes of entry into the developing mammalian brain. The endocrine environment has to adjust when an embryo ceases to rely solely on maternal source of hormones as its own thyroid gland develops and starts to produce endogenous TH. A number of mechanisms are in place to secure the proper delivery and action of TH with placenta, blood-brain interface, and choroid plexus as barriers of entry that need to selectively transport and modify these hormones thus controlling their active levels. Additionally, target cells also possess mechanisms to import, modify and bind TH to further fine-tune their action. A complex picture of a tightly regulated network of transport proteins, modifying enzymes, and receptors has emerged from the past studies. TH have been implicated in multiple processes related to brain formation in mammals—neuronal progenitor proliferation, neuronal migration, functional maturation, and survival—with their exact roles changing over developmental time. Given the plethora of effects thyroid hormones exert on various cell types at different developmental periods, the precise spatiotemporal regulation of their action is of crucial importance. In this review we summarize the current knowledge about TH delivery, conversions, and function in the developing mammalian brain. We also discuss their potential role in vertebrate brain evolution and offer future directions for research aimed at elucidating TH signaling in nervous system development
Security against eavesdropping in quantum cryptography
In this article we deal with the security of the BB84 quantum cryptography
protocol over noisy channels using generalized privacy amplification. For this
we estimate the fraction of bits needed to be discarded during the privacy
amplification step. This estimate is given for two scenarios, both of which
assume the eavesdropper to access each of the signals independently and take
error correction into account. One scenario does not allow a delay of the
eavesdropper's measurement of a measurement probe until he receives additional
classical information. In this scenario we achieve a sharp bound. The other
scenario allows a measurement delay, so that the general attack of an
eavesdropper on individual signals is covered. This bound is not sharp but
allows a practical implementation of the protocol.Comment: 11 pages including 3 figures, contains new results not contained in
my Phys. Rev. A pape
- …