119,927 research outputs found
Geometry, thermodynamics, and finite-size corrections in the critical Potts model
We establish an intriguing connection between geometry and thermodynamics in
the critical q-state Potts model on two-dimensional lattices, using the q-state
bond-correlated percolation model (QBCPM) representation. We find that the
number of clusters of the QBCPM has an energy-like singularity for q different
from 1, which is reached and supported by exact results, numerical simulation,
and scaling arguments. We also establish that the finite-size correction to the
number of bonds, has no constant term and explains the divergence of related
quantities as q --> 4, the multicritical point. Similar analyses are applicable
to a variety of other systems.Comment: 12 pages, 6 figure
Mapping functions and critical behavior of percolation on rectangular domains
The existence probability and the percolation probability of the
bond percolation on rectangular domains with different aspect ratios are
studied via the mapping functions between systems with different aspect ratios.
The superscaling behavior of and for such systems with exponents
and , respectively, found by Watanabe, Yukawa, Ito, and Hu in [Phys. Rev.
Lett. \textbf{93}, 190601 (2004)] can be understood from the lower order
approximation of the mapping functions and for and ,
respectively; the exponents and can be obtained from numerically
determined mapping functions and , respectively.Comment: 17 pages with 6 figure
miR-218 targets survivin and regulates resistance to chemotherapeutics in breast cancer
Multidrug resistance (MDR) remains one of the most significant obstacles in breast cancer treatment, and this process often involves dysregulation of a great number of microRNAs (miRNAs). Some miRNAs are indicators of drug resistance and confer resistance to chemotherapeutic drugs, although our understanding of this complex process is still incomplete. We have used a combination of miRNA profiling and real-time PCR in two drug-resistant derivatives of MCF-7 and Cal51 cells. Experimental modulation of miR expression has been obtained by retroviral transfection. Taxol and doxorubicin IC50 values were obtained by short-term drug sensitivity assays. Apoptosis was determined by flow cytometry after annexin V staining, by caspase 3/7 and caspase 9 activity assays and the levels of apoptosis-related proteins bcl-2 and bax by real-time PCR and Western blot. miR target was studied using transient transfection of luciferase constructs with the 3 untranslated regions (UTR) of target mRNAs. Small interfering RNA-mediated genetic knock-down was performed in MDR cells and its modulatory effect on apoptosis examined. The effect of miRNA on tumorigenicity and tumor drug response was studied in mouse xenografts. miRNA profiling of two drug-resistant breast cancer cell models indicated that miR-218 was down-regulated in both MCF-7/A02 and CALDOX cells. Ectopic expression of miR-218 resensitized both drug-resistant cell lines to doxorubicin and taxol due to an increase in apoptosis. miR-218 binds survivin (BIRC5) mRNA 3-UTR and down-regulated reporter luciferase activity. Experimental down-regulation of survivin by RNA interference in drug-resistant cells did mimic the sensitization observed when miRNA-218 was up-regulated. In addition, resensitization to taxol was also observed in mouse tumor xenografts from cells over-expressing miR-218. miR-218 is involved in the development of MDR in breast cancer cells via targeting survivin and leading to evasion of apoptosis. Targeting miR-218 and survivin may thus provide a potential strategy for reversing drug resistance in breast cancer
- …