1,065 research outputs found
Evidence for an anomalous current phase relation in topological insulator Josephson junctions
Josephson junctions with topological insulator weak links can host low energy
Andreev bound states giving rise to a current phase relation that deviates from
sinusoidal behaviour. Of particular interest are zero energy Majorana bound
states that form at a phase difference of . Here we report on
interferometry studies of Josephson junctions and superconducting quantum
interference devices (SQUIDs) incorporating topological insulator weak links.
We find that the nodes in single junction diffraction patterns and SQUID
oscillations are lifted and independent of chemical potential. At high
temperatures, the SQUID oscillations revert to conventional behaviour, ruling
out asymmetry. The node lifting of the SQUID oscillations is consistent with
low energy Andreev bound states exhibiting a nonsinusoidal current phase
relation, coexisting with states possessing a conventional sinusoidal current
phase relation. However, the finite nodal currents in the single junction
diffraction pattern suggest an anomalous contribution to the supercurrent
possibly carried by Majorana bound states, although we also consider the
possibility of inhomogeneity.Comment: 6 pages, 4 figure
An increase in under hydrostatic pressure in the superconducting doped topological insulator NbBiSe
We report an unexpected positive hydrostatic pressure derivative of the
superconducting transition temperature in the doped topological insulator \NBS
via SQUID magnetometry in pressures up to 0.6 GPa. This result is contrary
to reports on the homologues \CBS and \SBS where smooth suppression of is
observed. Our results are consistent with recent Ginzburg-Landau theory
predictions of a pressure-induced enhancement of in the nematic
multicomponent state proposed to explain observations of rotational
symmetry breaking in doped BiSe superconductors.Comment: 5 pages, 5 figure
Phase Coherence and Andreev Reflection in Topological Insulator Devices
Topological insulators (TIs) have attracted immense interest because they
host helical surface states. Protected by time-reversal symmetry, they are
robust to non-magnetic disorder. When superconductivity is induced in these
helical states, they are predicted to emulate p-wave pairing symmetry, with
Majorana states bound to vortices. Majorana bound states possess non-Abelian
exchange statistics which can be probed through interferometry. Here, we take a
significant step towards Majorana interferometry by observing pronounced
Fabry-Perot oscillations in a TI sandwiched between a superconducting and
normal lead. For energies below the superconducting gap, we observe a doubling
in the frequency of the oscillations, arising from the additional phase
accumulated from Andreev reflection. When a magnetic field is applied
perpendicular to the TI surface, a number of very sharp and gate-tunable
conductance peaks appear at or near zero energy, which has consequences for
interpreting spectroscopic probes of Majorana fermions. Our results demonstrate
that TIs are a promising platform for exploring phase-coherent transport in a
solid-state system.Comment: 9 pages, 7 figure
Crystal Structure and Chemistry of Topological Insulators
Topological surface states, a new kind of electronic state of matter, have
recently been observed on the cleaved surfaces of crystals of a handful of
small band gap semiconductors. The underlying chemical factors that enable
these states are crystal symmetry, the presence of strong spin orbit coupling,
and an inversion of the energies of the bulk electronic states that normally
contribute to the valence and conduction bands. The goals of this review are to
briefly introduce the physics of topological insulators to a chemical audience
and to describe the chemistry, defect chemistry, and crystal structures of the
compounds in this emergent field.Comment: Submitted to Journal of Materials Chemistry, 47 double spaced pages,
9 figure
Dynamical Gate Tunable Supercurrents in Topological Josephson Junctions
Josephson junctions made of closely-spaced conventional superconductors on
the surface of 3D topological insulators have been proposed to host Andreev
bound states (ABSs) which can include Majorana fermions. Here, we present an
extensive study of the supercurrent carried by low energy ABSs in
Nb/BiSe/Nb Josephson junctions in various SQUIDs as we modulate the
carrier density in the BiSe barriers through electrostatic top gates.
As previously reported, we find a precipitous drop in the Josephson current at
a critical value of the voltage applied to the top gate. This drop has been
attributed to a transition where the topologically trivial 2DEG at the surface
is nearly depleted, causing a shift in the spatial location and change in
nature of the helical surface states. We present measurements that support this
picture by revealing qualitative changes in the temperature and magnetic field
dependence of the critical current across this transition. In particular, we
observe pronounced fluctuations in the critical current near total depletion of
the 2DEG that demonstrate the dynamical nature of the supercurrent transport
through topological low energy ABSs.Comment: 6 pages, 6 figure
Robust Fabry-Perot interference in dual-gated BiSe devices
We study Fabry-Perot interference in hybrid devices, each consisting of a
mesoscopic superconducting disk deposited on the surface of a three-dimensional
topological insulator. Such structures are hypothesized to contain protected
zero modes known as Majorana fermions bound to vortices. The interference
manifests as periodic conductance oscillations of magnitude .
These oscillations show no strong dependence on bulk carrier density or sample
thickness, suggesting that they result from phase coherent transport in surface
states. However, the Fabry-Perot interference can be tuned by both top and back
gates, implying strong electrostatic coupling between the top and bottom
surfaces of topological insulator.Comment: 5 pages, 3 figures. Accepted by Appl. Phys. Let
The hole Fermi surface in BiSe probed by quantum oscillations
Transport and torque magnetometry measurements are performed at high magnetic
fields and low temperatures in a series of p-type (Ca-doped) BiSe
crystals. The angular dependence of the Shubnikov-de Haas and de Haas-van
Alphen quantum oscillations enables us to determine the Fermi surface of the
bulk valence band states as a function of the carrier density. At low density,
the angular dependence exhibits a downturn in the oscillations frequency
between and , reflecting a bag-shaped hole Fermi surface.
The detection of a single frequency for all tilt angles rules out the existence
of a Fermi surface with different extremal cross-sections down to ~meV.
There is therefore no signature of a camel-back in the valence band of our bulk
samples, in accordance with the direct band gap predicted by calculations.Comment: A supplemental material file giving a more detailed description of
our work is available upon reques
Oral cancer secretome: Identification of cancer-associated proteins
This study aims to identify cancer-associated proteins in the secretome of oral cancer cell lines. We have successfully established four primary cell cultures of normal cells with a limited lifespan without human telomerase reverse transcriptase (hTERT) immortalization. The secretome of these primary cell cultures were compared with that of oral cancer cell lines using 2DE. Thirty five protein spots were found to have changed in abundance. Unambiguous identification of these proteins was achieved by MALDI TOF/TOF. In silico analysis predicted that 24 of these proteins were secreted via classical or nonclassical mechanisms. The mRNA expression of six genes was found to correlate with the corresponding protein abundance. Ingenuity Pathway Analysis (IPA) core analysis revealed that the identified proteins were relevant in, and related to, cancer development with likely involvements in tumor growth, metastasis, hyperproliferation, tumorigenesis, neoplasia, hyperplasia, and cell transformation. In conclusion, we have demonstrated that a comparative study of the secretome of cancer versus normal cell lines can be used to identify cancer-associated proteins.Article Link: http://onlinelibrary.wiley.com/doi/10.1002/elps.201300126/abstrac
Modelling and Evaluation of Electrical Resonance Eddy Current for Submillimeter Defect Detection
Eddy current (EC) inspection is used extensively in non-destructive testing (NDT) to detect surface-breaking defects of engineering components. However, the sensitivity of conventional eddy current inspection has plateaued in recent years. The ability to detect submillimetre defects before it becomes critical would allow engineering components to remain in-service safely for longer. Typically, it is required that higher frequency EC is employed to achieve a suitable sensitivity for detection of such submillimetre defects. However, that would lead to significant electromagnetic noise affecting the sensitivity of the inspection. To overcome this issue, the electrical-resonance based eddy current method has been proposed, where the electrical enhanced resonance signal increases the contrast between signal and noise, thus improving the sensitivity of the defect detection. This work aims to investigate the electrical-resonance system via simulation technology using combination of fast numerical-based simulation and circuit approach. Leveraging on this model, the detection system can be optimized by performing parameters tuning. Investigation of both experiment and simulation develops a precise calibration model for submillimeter defects detection
- …