2,071 research outputs found
Transport Properties of "Extended-s" State Superconductors
Superconducting states with "extended s-wave" symmetry have been suggested in
connection with recent ARPES experiments on BSCCO. In the presence of
impurities, thermodynamic properties of such states reflect a residual density
of states for a range of concentrations. While properties reflecting
alone will be similar to those of d-wave states, transport
measurements may be shown to qualitatively distinguish between the two. In
contrast to the d-wave case with unitarity limit scattering, limiting
low-temperature residual conductivities in the s-wave state are large and scale
inversely with impurity concentration.Comment: 4 pages, 5 figures, uuencoded compressed postscript fil
Lower Bound for the Fermi Level Density of States of a Disordered D-Wave Superconductor in Two Dimensions
We consider a disordered d--wave superconductor in two dimensions. Recently,
we have shown in an exact calculation that for a lattice model with a
Lorentzian distributed random chemical potential the quasiparticle density of
states at the Fermi level is nonzero. As the exact result holds only for the
special choice of the Lorentzian, we employ different methods to show that for
a large class of distributions, including the Gaussian distribution, one can
establish a nonzero lower bound for the Fermi level density of states. The fact
that the tails of the distributions are unimportant in deriving the lower bound
shows that the exact result obtained before is generic.Comment: 15 preprint pages, no figures, submitted to PR
Finite Density of States in a Mixed State of d_x^2-y^2+id_xy Superconductor
We have calculated the density of states of quasiparticles in a
d_x^2-y^2+id_xy superconductor, and show that in the mixed state the
quasiparticle spectrum remains gapless because of the Doppler shift by
superflow. It was found that if the d_{xy} order gap
as suggested by experiments, then thermal conductivity in accord with experimental data at lowest temperatures. This is an
appended version of the paper published in Phys. Rev. {\bf B 59}, 6024, (1999).
We now also discuss the disorder effects and analyze the H log H crossover at
small fields. We argue that H log H regime is present and disorder effect is
dominant as the field-induced seconary gap is small at small fields.Comment: This is an appended version of the paper published in Phys. Rev. {\bf
B 59}, 6024, (1999). We now also discuss the disorder effects and analyze the
H log H crossover at small fields. 3 pages, Latex file with 2 eps figure
file
Scattering by impurity-induced order parameter ``holes'' in d-wave superconductors
Nonmagnetic impurities in d-wave superconductors cause strong local
suppressions of the order parameter. We investigate the observable effects of
the scatterigng off such suppressions in bulk samples by treating the order
parameter "hole" as a pointlike off-diagonal scatterer treated within a
self-consistent t-matrix approximation. Strong scattering potentials lead to a
finite-energy spectral feature in the d-wave "impurity band", the observable
effects of which include enhanced low-temperature microwave power absorption
and a stronger sensitivity of the London penetration depth to disorder than
found previously in simpler ``dirty'' d-wave models.Comment: 5 pp. Revtex including 4 postscript figures, submitted to Phys. Rev.
Theory of Thermal Conductivity in YBa_2Cu_3O_{7-\delta}
We calculate the electronic thermal conductivity in a d-wave superconductor,
including both the effect of impurity scattering and inelastic scattering by
antiferromagnetic spin fluctuations. We analyze existing experiments,
particularly with regard to the question of the relative importance of
electronic and phononic contributions to the heat current, and to the influence
of disorder on low-temperature properties. We find that phonons dominate heat
transport near T_c, but that electrons are responsible for most of the peak
observed in clean samples, in agreement with a recent analysis of Krishana et
al. In agreement with recent data on YBa_2(Cu_1-xZn_x)_3O_7-\delta the peak
position is found to vary nonmonotonically with disorder.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Let
Transport Properties of d-Wave Superconductors in the Vortex State
We calculate the magnetic field dependence of quasiparticle transport
properties in the vortex state of a d-wave superconductor arising solely from
the quasiparticle's Doppler shift in the superflow field surrounding the
vortex. Qualitative features agree well with experiments on cuprate and heavy
fermion superconductors at low fields and temperatures. We derive scaling
relations in the variable valid at sufficiently low temperatures
and fields , but show that these relations depend on the scattering
phase shift, and are in general fulfilled only approximately even in the clean
limit, due to the energy dependence of the quasiparticle relaxation time.Comment: 5 pages, 2 Postscript figure
Mermin's Pentagram as an Ovoid of PG(3,2)
Mermin's pentagram, a specific set of ten three-qubit observables arranged in
quadruples of pairwise commuting ones into five edges of a pentagram and used
to provide a very simple proof of the Kochen-Specker theorem, is shown to be
isomorphic to an ovoid (elliptic quadric) of the three-dimensional projective
space of order two, PG(3,2). This demonstration employs properties of the real
three-qubit Pauli group embodied in the geometry of the symplectic polar space
W(5,2) and rests on the facts that: 1) the four observables/operators on any of
the five edges of the pentagram can be viewed as points of an affine plane of
order two, 2) all the ten observables lie on a hyperbolic quadric of the
five-dimensional projective space of order two, PG(5,2), and 3) that the points
of this quadric are in a well-known bijective correspondence with the lines of
PG(3,2).Comment: 5 pages, 4 figure
Role of the impurity-potential range in disordered d-wave superconductors
We analyze how the range of disorder affects the localization properties of
quasiparticles in a two-dimensional d-wave superconductor within the standard
non-linear sigma-model approach to disordered systems. We show that for purely
long-range disorder, which only induces intra-node scattering processes, the
approach is free from the ambiguities which often beset the disordered
Dirac-fermion theories, and gives rise to a Wess-Zumino-Novikov-Witten action
leading to vanishing density of states and finite conductivities. We also study
the crossover induced by internode scattering due to a short range component of
the disorder, thus providing a coherent non-linear sigma-model description in
agreement with all the various findings of different approaches.Comment: 38 pages, 1 figur
- …