4,975 research outputs found

    Overview of event-by-event analysis of high energy nuclear collisions

    Full text link
    The event-by-event analysis of high energy nuclear collisions aims at revealing the richness of the underlying event structures and provide unique measures of dynamical fluctuations associated with QGP phase transition. The major challenge in these studies is to separate the dynamical fluctuations from the many other sources which contribute to the measured values. We present the fluctuations in terms of event multiplicity, mean transverse momentum, elliptic flow, source sizes, particle ratios and net charge distributions. In addition, we discuss the effect of long range correlations, disoriented chiral condensates and presence of jets. A brief review of various probes used for fluctuation studies and available experimental results are presented.Comment: Invited talk at the "XIth International Workshop on Correlation and Fluctuation in Multiparticle Production", Nov 21-24, 2006, Hangzhou, China (19 pages

    Second and higher-order quasi-normal modes in binary black hole mergers

    Get PDF
    Black hole (BH) oscillations known as quasi-normal modes (QNMs) are one of the most important gravitational wave (GW) sources. We propose that higher perturbative order of QNMs, generated by nonlinear gravitational interaction near the BHs, are detectable and worth searching for in observations and simulations of binary BH mergers. We calculate the metric perturbations to second-order and explicitly regularize the master equation at the horizon and spatial infinity. We find that the second-order QNMs have frequencies twice the first-order ones and the GW amplitude is up to ~10% that of the first-order one. The QNM frequency would also shift blueward up to ~1%. This provides a new test of general relativity as well as a possible distance indicator.Comment: 5 pages, 1 figure, accepted for publication in PRD Rapid Communication

    Quantization of scalar perturbations in brane-world inflation

    Full text link
    We consider a quantization of scalar perturbations about a de Sitter brane in a 5-dimensional anti-de Sitter (AdS) bulk spacetime. We first derive the second order action for a master variable Ω\Omega for 5-dimensional gravitational perturbations. For a vacuum brane, there is a continuum of normalizable Kaluza-Klein (KK) modes with m>3H/2m>3H/2. There is also a light radion mode with m=2Hm=\sqrt{2}H which satisfies the junction conditions for two branes, but is non-normalizable for a single brane model. We perform the quantization of these bulk perturbations and calculate the effective energy density of the projected Weyl tensor on the barne. If there is a test scalar field perturbation on the brane, the m2=2H2m^2 = 2H^2 mode together with the zero-mode and an infinite ladder of discrete tachyonic modes become normalizable in a single brane model. This infinite ladder of discrete modes as well as the continuum of KK modes with m>3H/2m>3H/2 introduce corrections to the scalar field perturbations at first-order in a slow-roll expansion. We derive the second order action for the Mukhanov-Sasaki variable coupled to the bulk perturbations which is needed to perform the quantization and determine the amplitude of scalar perturbations generated during inflation on the brane.Comment: 14 page

    Black Strings in Our World

    Full text link
    The brane world scenario is a new approach to resolve the problem on how to compactify the higher dimensional spacetime to our 4-dimensional world. One of the remarkable features of this scenario is the higher dimensional effects in classical gravitational interactions at short distances. Due to this feature, there are black string solutions in our 4-dimensional world. In this paper, assuming the simplest model of complex minimally coupled scalar field with the local U(1) symmetry, we show a possibility of black-string formation by merging processes of type I long cosmic strings in our 4-dimensional world. No fine tuning for the parameters in the model might be necessary.Comment: 11pages, no figur

    Second Order Quasi-Normal Mode of the Schwarzschild Black Hole

    Get PDF
    We formulate and calculate the second order quasi-normal modes (QNMs) of a Schwarzschild black hole (BH). Gravitational wave (GW) from a distorted BH, so called ringdown, is well understood as QNMs in general relativity. Since QNMs from binary BH mergers will be detected with high signal-to-noise ratio by GW detectors, it is also possible to detect the second perturbative order of QNMs, generated by nonlinear gravitational interaction near the BH. In the BH perturbation approach, we derive the master Zerilli equation for the metric perturbation to second order and explicitly regularize it at the horizon and spatial infinity. We numerically solve the second order Zerilli equation by implementing the modified Leaver's continued fraction method. The second order QNM frequencies are found to be twice the first order ones, and the GW amplitude is up to ∌10\sim 10% that of the first order for the binary BH mergers. Since the second order QNMs always exist, we can use their detections (i) to test the nonlinearity of general relativity, in particular the no-hair theorem, (ii) to remove fake events in the data analysis of QNM GWs and (iii) to measure the distance to the BH.Comment: 23 pages, no figur

    Infrared Spectral Energy Distribution Model for Extremely Young Galaxies

    Full text link
    The small grain sizes produced by Type II supernova (SN II) models in young, metal-poor galaxies make the appearance of their infrared (IR) spectral energy distribution (SED) quite different from that of nearby, older galaxies. To study this effect, we have developed a model for the evolution of dust content and the IR SED of low-metallicity, extremely young galaxies based on Hirashita et al. (2002). We find that, even in the intense ultraviolet (UV) radiation field of very young galaxies, small silicate grains are subject to stochastic heating resulting in a broad temperature distribution and substantial MIR continuum emission. Larger carbonaceous grains are in thermal equilibrium at T \simeq 50 - 100K, and they also contribute to the MIR. We present the evolution of SEDs and IR extinction of very young, low-metallicity galaxies. The IR extinction curve is also shown. In the first few Myrs, the emission peaks at \lambda \sim 30-50um at later times dust self-absorption decreases the apparent grain temperatures, shifting the bulk of the emission into the submillimetre band. We successfully apply the model to the IR SED of a low metallicity (1/41 Z_\odot) dwarf galaxy SBS0335-052. We find the SED, optical properties and extinction of the star forming region to be consistent with a very young and compact starburst. We also predict the SED of another extremely low-metallicity galaxy, I Zw 18, for future observational tests. Some prospects for future observations are discussed.Comment: MNRAS in press, pages, 6 figures, using mn2e.cls. Abstract abridge

    Constraints from Neutrinoless Double Beta Decay

    Get PDF
    We examine the constraints from the recent HEIDELBERG-MOSCOW double beta decay experiment. It leads us to the almost degenerate or inverse hierarchy neutrino mass scenario. In this scenario, we obtain possible upper bounds for the Majorana CP violating phase in the lepton sector by incorporating the data from the neutrino oscillation, the single beta decay experiments, and from the astrophysical observation. We also predict the neutrino mass that may be measurable in the future beta decay experiments.Comment: 10 pages, 3 figure

    Open String on Symmetric Product

    Get PDF
    We develop some basic properties of the open string on the symmetric product which is supposed to describe the open string field theory in discrete lightcone quantization (DLCQ). After preparing the consistency conditions of the twisted boundary conditions for Annulus/M\"obius/Klein Bottle amplitudes in generic non-abelian orbifold, we classify the most general solutions of the constraints when the discrete group is SNS_N. We calculate the corresponding orbifold amplitudes from two viewpoints -- from the boundary state formalism and from the trace over the open string Hilbert space. It is shown that the topology of the world sheet for the short string and that of the long string in general do not coincide. For example the annulus sector for the short string contains all the sectors (torus, annulus, Klein bottle, M\"obius strip) of the long strings. The boundary/cross-cap states of the short strings are classified into three categories in terms of the long string, the ordinary boundary and the cross-cap states, and the ``joint'' state which describes the connection of two short strings. We show that the sum of the all possible boundary conditions is equal to the exponential of the sum of the irreducible amplitude -- one body amplitude of long open (closed) strings. This is typical structure of DLCQ partition function. We examined that the tadpole cancellation condition in our language and derived the well-known gauge group SO(213)SO(2^{13}).Comment: 56 pages, 11 figures, Late
    • 

    corecore