56 research outputs found
Radial distribution function of penetrable sphere fluids to second order in density
The simplest bounded potential is that of penetrable spheres, which takes a
positive finite value if the two spheres are overlapped, being 0
otherwise. In this paper we derive the cavity function to second order in
density and the fourth virial coefficient as functions of (where is the Boltzmann constant and is the
temperature) for penetrable sphere fluids. The expressions are exact, except
for the function represented by an elementary diagram inside the core, which is
approximated by a polynomial form in excellent agreement with accurate results
obtained by Monte Carlo integration. Comparison with the hypernetted-chain
(HNC) and Percus-Yevick (PY) theories shows that the latter is better than the
former for only. However, even at zero temperature (hard sphere
limit), the PY solution is not accurate inside the overlapping region, where no
practical cancelation of the neglected diagrams takes place. The exact fourth
virial coefficient is positive for , reaches a minimum
negative value at , and then goes to zero from below as
for high temperatures. These features are captured qualitatively,
but not quantitatively, by the HNC and PY predictions. In addition, in both
theories the compressibility route is the best one for , while
the virial route is preferable if .Comment: 10 pages, 2 figures; v2: minor changes; to be published in PR
Mesoscopic theory for size- and charge- asymmetric ionic systems. I. Case of extreme asymmetry
A mesoscopic theory for the primitive model of ionic systems is developed for
arbitrary size, , and charge, ,
asymmetry. Our theory is an extension of the theory we developed earlier for
the restricted primitive model. The case of extreme asymmetries
and is studied in some detail in a mean-field
approximation. The phase diagram and correlation functions are obtained in the
asymptotic regime and , and for infinite
dilution of the larger ions (volume fraction or less). We find a
coexistence between a very dilute 'gas' phase and a crystalline phase in which
the macroions form a bcc structure with the lattice constant . Such coexistence was observed experimentally in deionized aqueous
solutions of highly charged colloidal particles
Particles-vortex interactions and flow visualization in He4
Recent experiments have demonstrated a remarkable progress in implementing
and use of the Particle Image Velocimetry (PIV) and particle tracking
techniques for the study of turbulence in He4. However, an interpretation of
the experimental data in the superfluid phase requires understanding how the
motion of tracer particles is affected by the two components, the viscous
normal fluid and the inviscid superfluid. Of a particular importance is the
problem of particle interactions with quantized vortex lines which may not only
strongly affect the particle motion, but, under certain conditions, may even
trap particles on quantized vortex cores. The article reviews recent
theoretical, numerical, and experimental results in this rapidly developing
area of research, putting critically together recent results, and solving
apparent inconsistencies. Also discussed is a closely related technique of
detection of quantized vortices negative ion bubbles in He4.Comment: To appear in the J Low Temperature Physic
- …