106 research outputs found
Particle Survival and Polydispersity in Aggregation
We study the probability, , of a cluster to remain intact in
one-dimensional cluster-cluster aggregation when the cluster diffusion
coefficient scales with size as . exhibits a
stretched exponential decay for and the power-laws for
, and for . A random walk picture
explains the discontinuous and non-monotonic behavior of the exponent. The
decay of determines the polydispersity exponent, , which
describes the size distribution for small clusters. Surprisingly,
is a constant for .Comment: submitted to Europhysics Letter
Cluster persistence in one-dimensional diffusion--limited cluster--cluster aggregation
The persistence probability, , of a cluster to remain unaggregated is
studied in cluster-cluster aggregation, when the diffusion coefficient of a
cluster depends on its size as . In the mean-field the
problem maps to the survival of three annihilating random walkers with
time-dependent noise correlations. For the motion of persistent
clusters becomes asymptotically irrelevant and the mean-field theory provides a
correct description. For the spatial fluctuations remain relevant
and the persistence probability is overestimated by the random walk theory. The
decay of persistence determines the small size tail of the cluster size
distribution. For the distribution is flat and, surprisingly,
independent of .Comment: 11 pages, 6 figures, RevTeX4, submitted to Phys. Rev.
Measurements of hydrocarbon emissions from a boreal fen using the REA technique
International audienceFluxes of biogenic volatile organic compounds (VOC) and methane were measured above a boreal fen. Vegetation on the fen is dominated by Sphagnum mosses and sedges. A relaxed eddy accumulation (REA) system with dynamic deadband was designed and constructed for the measurements. Methane, C2-C6 hydrocarbons and some halogenated hydrocarbons were analysed from the samples by gas chromatographs equipped with FID and ECD. A significant flux of isoprene and methane was detected during the growing seasons. Isoprene emission was found to follow the common isoprene emission algorithm. Average standard emission potential of isoprene was 680 ? g m-2h-1. Fluxes of other non-methane hydrocarbons were below detection limit
Coarsening of Sand Ripples in Mass Transfer Models with Extinction
Coarsening of sand ripples is studied in a one-dimensional stochastic model,
where neighboring ripples exchange mass with algebraic rates, , and ripples of zero mass are removed from the system. For ripples vanish through rare fluctuations and the average ripples mass grows
as \avem(t) \sim -\gamma^{-1} \ln (t). Temporal correlations decay as
or depending on the symmetry of the mass transfer, and
asymptotically the system is characterized by a product measure. The stationary
ripple mass distribution is obtained exactly. For ripple evolution
is linearly unstable, and the noise in the dynamics is irrelevant. For the problem is solved on the mean field level, but the mean-field theory
does not adequately describe the full behavior of the coarsening. In
particular, it fails to account for the numerically observed universality with
respect to the initial ripple size distribution. The results are not restricted
to sand ripple evolution since the model can be mapped to zero range processes,
urn models, exclusion processes, and cluster-cluster aggregation.Comment: 10 pages, 8 figures, RevTeX4, submitted to Phys. Rev.
No self-similar aggregates with sedimentation
Two-dimensional cluster-cluster aggregation is studied when clusters move
both diffusively and sediment with a size dependent velocity. Sedimentation
breaks the rotational symmetry and the ensuing clusters are not self-similar
fractals: the mean cluster width perpendicular to the field direction grows
faster than the height. The mean width exhibits power-law scaling with respect
to the cluster size, ~ s^{l_x}, l_x = 0.61 +- 0.01, but the mean height
does not. The clusters tend to become elongated in the sedimentation direction
and the ratio of the single particle sedimentation velocity to single particle
diffusivity controls the degree of orientation. These results are obtained
using a simulation method, which becomes the more efficient the larger the
moving clusters are.Comment: 10 pages, 10 figure
The electric field close to an undulating interface
The electric potential close to a boundary between two dielectric material layers reflects the geometry of such an interface. The local variations arise from the combination of material parameters and from the nature of the inhomogeneity. Here, the arising electric field is considered for both a sinusoidally varying boundary and for a ârough,â Gaussian test case. We discuss the applicability of a one-dimensional model with the varying layer thickness as a parameter and the generic scaling of the results. As an application we consider the effect of paper roughness on toner transfer in electrophotographic printing.Peer reviewe
Persistence in Cluster--Cluster Aggregation
Persistence is considered in diffusion--limited cluster--cluster aggregation,
in one dimension and when the diffusion coefficient of a cluster depends on its
size as . The empty and filled site persistences are
defined as the probabilities, that a site has been either empty or covered by a
cluster all the time whereas the cluster persistence gives the probability of a
cluster to remain intact. The filled site one is nonuniversal. The empty site
and cluster persistences are found to be universal, as supported by analytical
arguments and simulations. The empty site case decays algebraically with the
exponent . The cluster persistence is related to the
small behavior of the cluster size distribution and behaves also
algebraically for while for the behavior is
stretched exponential. In the scaling limit and with fixed the distribution of intervals of size between
persistent regions scales as , where is the average interval size and . For finite the
scaling is poor for , due to the insufficient separation of the two
length scales: the distances between clusters, , and that between
persistent regions, . For the size distribution of persistent regions
the time and size dependences separate, the latter being independent of the
diffusion exponent but depending on the initial cluster size
distribution.Comment: 14 pages, 12 figures, RevTeX, submitted to Phys. Rev.
Hydrocarbon fluxes above a Scots pine forest canopy: Measurements and modeling
International audienceWe measured the fluxes of several hydrocarbon species above a Scots pine (Pinus sylvestris) stand using disjunct eddy covariance technique with proton transfer reaction ? mass spectrometry. The measurements were conducted during four days in July at SMEAR II research station in HyytiÀlÀ, Finland. Compounds which showed significant emission fluxes were methanol, acetaldehyde, acetone, and monoterpenes. A stochastic Lagrangian transport model with simple chemical degradation was applied to assess the sensitivity of the above canopy fluxes to chemistry. According to the model, the chemical degradation had a minor effect on the fluxes measured in this study but has a major effect on the vertical flux profiles of more reactive compounds, such as sesquiterpenes. The monoterpene fluxes followed the traditional exponential temperature dependent emission algorithm but were considerably higher than the fluxes measured before at the same site. The normalized emission potential (30°C) was 2.5 ?g gdw?1 h?1 obtained using the temperature dependence coefficient of 0.09°C?1
Permeability of Three-Dimensional Random Fiber Webs
We report the results of essentially ab initio simulations of creeping flow through large three-dimensional random fiber webs that closely resemble fibrous sheets such as paper and nonwoven fabrics. The computational scheme used in this Letter is that of the lattice-Boltzmann method and contains no free parameters concerning the properties of the porous medium or the dynamics of the flow. The computed permeability of the web is found to be in good agreement with experimental data, and confirms that permeability depends exponentially on porosity over a large range of porosity.Peer reviewe
- âŠ