2,836 research outputs found
Stau as the Lightest Supersymmetric Particle in R-Parity Violating SUSY Models: Discovery Potential with Early LHC Data
We investigate the discovery potential of the LHC experiments for R-parity
violating supersymmetric models with a stau as the lightest supersymmetric
particle (LSP) in the framework of minimal supergravity. We classify the final
states according to their phenomenology for different R-parity violating decays
of the LSP. We then develop event selection cuts for a specific benchmark
scenario with promising signatures for the first beyond the Standard Model
discoveries at the LHC. For the first time in this model, we perform a detailed
signal over background analysis. We use fast detector simulations to estimate
the discovery significance taking the most important Standard Model backgrounds
into account. Assuming an integrated luminosity of 1 inverse femtobarn at a
center-of-mass energy of 7 TeV, we perform scans in the parameter space around
the benchmark scenario we consider. We then study the feasibility to estimate
the mass of the stau-LSP. We briefly discuss difficulties, which arise in the
identification of hadronic tau decays due to small tau momenta and large
particle multiplicities in our scenarios.Comment: 26 pages, 18 figures, LaTeX; minor changes, final version published
in PR
Probing Trilinear Gauge Boson Interactions via Single Electroweak Gauge Boson Production at the LHC
We analyze the potential of the CERN Large Hadron Collider (LHC) to study
anomalous trilinear vector-boson interactions W^+ W^- \gamma and W^+ W^- Z
through the single production of electroweak gauge bosons via the weak boson
fusion processes q q -> q q W (-> \ell^\pm \nu) and q q -> q q Z(-> \ell^+
\ell^-) with \ell = e or \mu. After a careful study of the standard model
backgrounds, we show that the single production of electroweak bosons at the
LHC can provide stringent tests on deviations of these vertices from the
standard model prediction. In particular, we show that single gauge boson
production exhibits a sensitivity to the couplings \Delta \kappa_{Z,\gamma}
similar to that attainable from the analysis of electroweak boson pair
production.Comment: 20 pages, 6 figure
Possible improvements on the mass of the tau neutrino using leptonic decays
We show how a very accurate measurement of the branching ratios of the
leptonic decay modes of the mesons can lead to a significant
improvement in the mass limit for the tau neutrino.Comment: 1 typo in Eq.2 correcte
QCD Corrections to Vector-Boson Fusion Processes in Warped Higgsless Models
We discuss the signatures of a representative Higgsless model with ideal
fermion delocalization in vector-boson fusion processes, focusing on the gold-
and silver-plated decay modes of the gauge bosons at the CERN-Large Hadron
Collider. For this purpose, we have developed a fully-flexible parton-level
Monte-Carlo program, which allows for the calculation of cross sections and
kinematic distributions within experimentally feasible selection cuts at
NLO-QCD accuracy. We find that Kaluza-Klein resonances give rise to very
distinctive distributions of the decay leptons. Similar to the Standard Model
case, within the Higgsless scenario the perturbative treatment of the
vector-boson scattering processes is under excellent control.Comment: 22 pages, 20 figure
Cosmological gravitino problem confronts electroweak physics
A generic feature of gauge-mediated supersymmetry breaking models is that the
gravitino is the lightest supersymmetric particle (LSP). In order not to
overclose the universe, the gravitino LSP should be light enough (~ 1 keV), or
appropriately heavy (~ 1 GeV). We study further constraints on the mass of the
gravitino imposed by electroweak experiments, i.e., muon g-2 measurements,
electroweak precision measurements, and direct searches for supersymmetric
particles at LEP2. We find that the heavy gravitino is strongly disfavored from
the lower mass bound on the next-to-LSP. The sufficiently light gravitino, on
the other hand, has rather sizable allowed regions in the model parameter
space.Comment: 11 pages, 8 figures, version to appear in PR
Cellular localization, accumulation and trafficking of double-walled carbon nanotubes in human prostate cancer cells
Carbon nanotubes (CNTs) are at present being considered as potential nanovectors with the ability to deliver therapeutic cargoes into living cells. Previous studies established the ability of CNTs to enter cells and their therapeutic utility, but an appreciation of global intracellular trafficking associated with their cellular distribution has yet to be described. Despite the many aspects of the uptake mechanism of CNTs being studied, only a few studies have investigated internalization and fate of CNTs inside cells in detail. In the present study, intracellular localization and trafficking of RNA-wrapped, oxidized double-walled CNTs (oxDWNT–RNA) is presented. Fixed cells, previously exposed to oxDWNT–RNA, were subjected to immunocytochemical analysis using antibodies specific to proteins implicated in endocytosis; moreover cell compartment markers and pharmacological inhibitory conditions were also employed in this study. Our results revealed that an endocytic pathway is involved in the internalization of oxDWNT–RNA. The nanotubes were found in clathrin-coated vesicles, after which they appear to be sorted in early endosomes, followed by vesicular maturation, become located in lysosomes. Furthermore, we observed co-localization of oxDWNT–RNA with the small GTP-binding protein (Rab 11), involved in their recycling back to the plasma membrane via endosomes from the trans-golgi network
Searching for a light Fermiophobic Higgs Boson at the Tevatron
We propose new production mechanisms for light fermiophobic Higgs bosons
() with suppressed couplings to vector bosons () at the Fermilab
Tevatron. These mechanisms (e.g. ) are complementary to the
conventional process , which suffers from a strong suppression of
in realistic models with a . The new mechanisms extend the
coverage at the Tevatron Run II to the larger region, and offer the
possibility of observing new event topologies with up to 4 photons.Comment: 15 pages, including 5 eps-figure
Universal Extra Dimensions and the Higgs Boson Mass
We study the combined constraints on the compactification scale 1/R and the
Higgs mass m_H in the standard model with one or two universal extra
dimensions. Focusing on precision measurements and employing the
Peskin-Takeuchi S and T parameters, we analyze the allowed region in the (m_H,
1/R) parameter space consistent with current experiments. For this purpose, we
calculate complete one-loop KK mode contributions to S, T, and U, and also
estimate the contributions from physics above the cutoff of the
higher-dimensional standard model. A compactification scale 1/R as low as 250
GeV and significantly extended regions of m_H are found to be consistent with
current precision data.Comment: 21 pages, Latex, 6 eps figures, an error in calculations was
corrected and results of analysis changed accordingly, references adde
Charged Higgs boson contribution to scattering from low to ultrahigh energy in Higgs triplet model
We study the scattering from low to ultrahigh energy in the
framework of Higgs Triplet Model (HTM). We add the contribution of charged
Higgs boson exchange to the total cross section of the scattering. We obtain
the upper bound in this
process from low energy experiment. We show that by using the upper bound
obtained, the charged Higgs contribution can give enhancements to the total
cross section with respect to the SM prediction up to 5.16% at
eV and maximum at and would help to determine the
feasibility experiments to discriminate between SM and HTM at current available
facilities.Comment: 6 pages, 6 figure
- …