11 research outputs found

    Lack of evidence in vivo for nitrergic inhibition by Escherichia coli (STa) enterotoxin of fluid absorption from rat proximal jejunum

    No full text
    Fluid absorption from the proximal jejunum of the anaesthetised rat was measured in vivo by fluid recovery. As expected, heat stable (STa) enterotoxin from E. coli reduced fluid absorption. Neither intraperitoneal L-NAME, thought to inhibit a putative neurally mediated action of STa, nor similar doses of D-NAME, ameliorated the inhibitory effect on jejunal fluid absorption of STa. Luminally perfused 10 mM sodium nitroprusside (SNP) had no effect on fluid absorption when expressed per gram dry weight per hour but reduced fluid absorption when expressed per cm length per hour. Similarly, 80 but not 40 mg/Kg of L-NAME reduced fluid absorption when expressed per cm length per hour, while the same dose of D-NAME did not. L-NAME and SNP significantly increased the wet weight to dry weight and the length to dry weight ratio of perfused loops. We conjecture that smooth muscle relaxation caused by these compounds increases interstitial fluid volumes that can be misconstrued as changes in absorption when this is expressed per cm length or per tissue wet weight. When fluid absorption is expressed per gram dry weight of tissue, there is no evidence for a role of nitric oxide in normal or STa inhibited fluid absorption

    Immunohistochemical localisation of pre-synaptic muscarinic receptor subtype-2 (M2r) in the enteric nervous system of guinea-pig ileum

    No full text
    The cholinergic muscarinic 2 receptor (M2r) is known to be present on smooth muscle cells in the intestine. Pharmacological studies also suggest that M2rs regulate transmitter release from nerves in the enteric nervous system. This study localised M2rs in the guinea-pig ileum using different antibodies and fluorescence immunohistochemistry. Double labelling with antibodies against neurochemical markers was used to identify the type of nerves bearing M2r. Guinea-pig ileum were fixed, prepared for sections and wholemounts and incubated with antisera against the M2r sequence. Tissue was double labelled with antibodies against neuronal nitric oxide synthase (nNOS), common choline acetyltransferase (cChAT), substance P (SP), synaptophysin and vesicular acetylcholine transporter (VAChT). Immunofluorescence was viewed using confocal microscopy. Abundant M2r-immunoreactivity (IR) was present on the surface of circular and longitudinal smooth muscle cells. M2r-IR was present in many but not all nerve fibres in the circular muscle and ganglia. M2r-IR was present in VAChT-IR and cChAT-IR cholinergic nerve fibres and SP-IR nerve fibres in the myenteric ganglia and submucosal ganglia. M2r-IR was present on a few nNOS-IR nerve fibres and around nNOS-IR neurons in the myenteric ganglia. In the circular muscle and deep muscular plexus, M2r-IR was present in many VAChT-IR and SP-IR nerve fibres and in few nNOS-IR nerves. M2rs are not only present on muscle cells in the intestine, but also on nerve fibres. M2rs may mediate cholinergic reflexes via their location on muscle and also via neural transmission. The pre-synaptic location supports pharmacological studies suggesting M2rs mediate neurotransmitter release from nerve fibres. The presence of M2rs on VAChT-IR, SP-IR and nNOS-IR-containing nerve fibres suggests M2rs may regulate ACh, SP and nitric oxide release.A. M. Harrington, J. M. Hutson, B. R. Southwel

    Advances in Anatomy Embryology and Cell Biology

    No full text
    corecore