23,310 research outputs found

    In situ synthesis of size-controlled, stable silver nanoparticles within ultrashort peptide hydrogels and their anti-bacterial properties

    Get PDF
    We have developed a silver-releasing biomaterial with promising potential for wound healing applications. The material is made of ultrashort peptides which can self-assemble in water to form hydrogels. Silver nanoparticles (Ag NPs) were synthesized in situ within the biomaterial, using only UV irradiation and no additional chemical reducing agents. The synthetic strategy allows precise control of the nanoparticle size, with the network of peptide fibers preventing aggregation of Ag NPs. The biomaterial shows increased mechanical strength compared to the hydrogel control. We observed a sustained release of Ag NPs over a period of 14 days. This is a crucial prerequisite for effective anti-bacterial therapy. The ability to inhibit bacterial growth was tested using different bacterial strains, namely gram-negative Escherichia coli and Pseudomonas aeruginosa and gram-positive Staphylococcus aureus. Inhibition of bacterial growth was observed for all strains. The best results were obtained for Pseudomonas aeruginosa which is known for exhibiting multidrug resistance. Biocompatibility studies on HDFa cells, using Ag NP-containing hydrogels, did not show any significant influence on cell viability. We propose this silver-releasing hydrogel as an excellent biomaterial with great potential for applications in wound healing due to its low silver content, sustained silver nanoparticle release and biocompatibility

    Coupling of Josephson Currents in Quantum Hall Bilayers

    Full text link
    We study ring shaped (Corbino) devices made of bilayer two-dimensional electron gases in the total filling factor one quantized Hall phase which is considered to be a coherent BCS-like state of interlayer excitons. Identical Josephson currents are observed at the two edges while only a negligible conductance between them is found. The maximum Josephson current observed at either edge can be controlled by passing a second interlayer Josephson current at the other edge. Due to the large electric resistance between the two edges, the interaction between them can only be mediated by the neutral interlayer excitonic groundstate

    A study of charge storage in silicon oxide resulting from non-penetrating electron irradiation

    Get PDF
    Charge storage in silicon dioxide resulting from electron irradiatio

    Charge storage effects in Mylar resulting from electron irradiation, June 1965 - June 1966

    Get PDF
    Charge storage effects in Mylar from electron irradiatio

    Collision of plane gravitational and electromagnetic waves in a Minkowski background: solution of the characteristic initial value problem

    Get PDF
    We consider the collisions of plane gravitational and electromagnetic waves with distinct wavefronts and of arbitrary polarizations in a Minkowski background. We first present a new, completely geometric formulation of the characteristic initial value problem for solutions in the wave interaction region for which initial data are those associated with the approaching waves. We present also a general approach to the solution of this problem which enables us in principle to construct solutions in terms of the specified initial data. This is achieved by re-formulating the nonlinear dynamical equations for waves in terms of an associated linear problem on the spectral plane. A system of linear integral ``evolution'' equations which solve this spectral problem for specified initial data is constructed. It is then demonstrated explicitly how various colliding plane wave space-times can be constructed from given characteristic initial data.Comment: 33 pages, 3 figures, LaTeX. Accepted for publication in Classical and Quantum Gravit

    Maximal multihomogeneity of algebraic hypersurface singularities

    Full text link
    From the degree zero part of logarithmic vector fields along an algebraic hypersurface singularity we indentify the maximal multihomogeneity of a defining equation in form of a maximal algebraic torus in the embedded automorphism group. We show that all such maximal tori are conjugate and in one-to-one correspondence to maxmimal tori in the degree zero jet of the embedded automorphism group. The result is motivated by Kyoji Saito's characterization of quasihomogeneity for isolated hypersurface singularities and extends its formal version and a result of Hauser and Mueller.Comment: 5 page

    Broadband multi-wavelength campaign on PKS 2005-489

    Full text link
    The spectral energy distribution (SED) of high-frequency peaked BL Lac objects (HBL) is characterized by two peaks: one in the UV-X-ray and one in the GeV-TeV regime. An interesting object for analyzing these broadband characteristics is PKS 2005-489, which in 2004 showed the softest TeV spectrum ever measured. In 2009, a multi-wavelength campaign has been conducted with, for the first time, simultaneous observations by H.E.S.S. (TeV), Fermi/LAT (GeV), RXTE (keV), Swift (keV, UV, optical) and ATOM (optical) to cover the two peaks of the SED. During this campaign PKS 2005-489 underwent a high state in all wavebands which gives the opportunity to study in detail the emission processes of a high state of this interesting HBL.Comment: 2009 Fermi Symposium; eConf Proceedings C09112

    Measurements of elastohydrodynamic film thickness, wear and tempering behavior of high pressure oxygen turbopump bearings

    Get PDF
    The reusable design of the Space Shuttle requires a target life of 7.5 hours for the turbopumps of the Space Shuttle main engine (SSME). This large increase from the few hundred seconds required in single-use rockets has caused various problems with the bearings of the turbopumps. The berings of the high pressure oxygen turbopump (HPOTP) were of particular concern because of wear, spalling, and cage failures at service time well below the required 7.5 hours. Lubrication and wear data were developed for the bearings. Since the HPOTP bearings operate in liquid oxygen, conventional liquid lubricants cannot be applied. Therefore, solid lubricant coatings and lubricant transfer from the polytetrafluorethylene (FTFE) cage were the primary lubrication approaches for the bearings. Measurements were made using liquid nitrogen in a rolling disk machine to determine whether usable elastohydrodynamic films could be generated to assist in the bearing lubrication

    Observables for spacetimes with two Killing field symmetries

    Full text link
    The Einstein equations for spacetimes with two commuting spacelike Killing field symmetries are studied from a Hamiltonian point of view. The complexified Ashtekar canonical variables are used, and the symmetry reduction is performed directly in the Hamiltonian theory. The reduced system corresponds to the field equations of the SL(2,R) chiral model with additional constraints. On the classical phase space, a method of obtaining an infinite number of constants of the motion, or observables, is given. The procedure involves writing the Hamiltonian evolution equations as a single `zero curvature' equation, and then employing techniques used in the study of two dimensional integrable models. Two infinite sets of observables are obtained explicitly as functionals of the phase space variables. One set carries sl(2,R) Lie algebra indices and forms an infinite dimensional Poisson algebra, while the other is formed from traces of SL(2,R) holonomies that commute with one another. The restriction of the (complex) observables to the Euclidean and Lorentzian sectors is discussed. It is also shown that the sl(2,R) observables can be associated with a solution generating technique which is linked to that given by Geroch.Comment: 23 pages (LateX-RevTeX), Alberta-Thy-55-9
    corecore