23,310 research outputs found
In situ synthesis of size-controlled, stable silver nanoparticles within ultrashort peptide hydrogels and their anti-bacterial properties
We have developed a silver-releasing biomaterial with promising potential for wound healing applications. The material is made of ultrashort peptides which can self-assemble in water to form hydrogels. Silver nanoparticles (Ag NPs) were synthesized in situ within the biomaterial, using only UV irradiation and no additional chemical reducing agents. The synthetic strategy allows precise control of the nanoparticle size, with the network of peptide fibers preventing aggregation of Ag NPs. The biomaterial shows increased mechanical strength compared to the hydrogel control. We observed a sustained release of Ag NPs over a period of 14 days. This is a crucial prerequisite for effective anti-bacterial therapy. The ability to inhibit bacterial growth was tested using different bacterial strains, namely gram-negative Escherichia coli and Pseudomonas aeruginosa and gram-positive Staphylococcus aureus. Inhibition of bacterial growth was observed for all strains. The best results were obtained for Pseudomonas aeruginosa which is known for exhibiting multidrug resistance. Biocompatibility studies on HDFa cells, using Ag NP-containing hydrogels, did not show any significant influence on cell viability. We propose this silver-releasing hydrogel as an excellent biomaterial with great potential for applications in wound healing due to its low silver content, sustained silver nanoparticle release and biocompatibility
Coupling of Josephson Currents in Quantum Hall Bilayers
We study ring shaped (Corbino) devices made of bilayer two-dimensional
electron gases in the total filling factor one quantized Hall phase which is
considered to be a coherent BCS-like state of interlayer excitons. Identical
Josephson currents are observed at the two edges while only a negligible
conductance between them is found. The maximum Josephson current observed at
either edge can be controlled by passing a second interlayer Josephson current
at the other edge. Due to the large electric resistance between the two edges,
the interaction between them can only be mediated by the neutral interlayer
excitonic groundstate
A study of charge storage in silicon oxide resulting from non-penetrating electron irradiation
Charge storage in silicon dioxide resulting from electron irradiatio
Charge storage effects in Mylar resulting from electron irradiation, June 1965 - June 1966
Charge storage effects in Mylar from electron irradiatio
Collision of plane gravitational and electromagnetic waves in a Minkowski background: solution of the characteristic initial value problem
We consider the collisions of plane gravitational and electromagnetic waves
with distinct wavefronts and of arbitrary polarizations in a Minkowski
background. We first present a new, completely geometric formulation of the
characteristic initial value problem for solutions in the wave interaction
region for which initial data are those associated with the approaching waves.
We present also a general approach to the solution of this problem which
enables us in principle to construct solutions in terms of the specified
initial data. This is achieved by re-formulating the nonlinear dynamical
equations for waves in terms of an associated linear problem on the spectral
plane. A system of linear integral ``evolution'' equations which solve this
spectral problem for specified initial data is constructed. It is then
demonstrated explicitly how various colliding plane wave space-times can be
constructed from given characteristic initial data.Comment: 33 pages, 3 figures, LaTeX. Accepted for publication in Classical and
Quantum Gravit
Maximal multihomogeneity of algebraic hypersurface singularities
From the degree zero part of logarithmic vector fields along an algebraic
hypersurface singularity we indentify the maximal multihomogeneity of a
defining equation in form of a maximal algebraic torus in the embedded
automorphism group. We show that all such maximal tori are conjugate and in
one-to-one correspondence to maxmimal tori in the degree zero jet of the
embedded automorphism group.
The result is motivated by Kyoji Saito's characterization of quasihomogeneity
for isolated hypersurface singularities and extends its formal version and a
result of Hauser and Mueller.Comment: 5 page
Broadband multi-wavelength campaign on PKS 2005-489
The spectral energy distribution (SED) of high-frequency peaked BL Lac
objects (HBL) is characterized by two peaks: one in the UV-X-ray and one in the
GeV-TeV regime. An interesting object for analyzing these broadband
characteristics is PKS 2005-489, which in 2004 showed the softest TeV spectrum
ever measured. In 2009, a multi-wavelength campaign has been conducted with,
for the first time, simultaneous observations by H.E.S.S. (TeV), Fermi/LAT
(GeV), RXTE (keV), Swift (keV, UV, optical) and ATOM (optical) to cover the two
peaks of the SED. During this campaign PKS 2005-489 underwent a high state in
all wavebands which gives the opportunity to study in detail the emission
processes of a high state of this interesting HBL.Comment: 2009 Fermi Symposium; eConf Proceedings C09112
Measurements of elastohydrodynamic film thickness, wear and tempering behavior of high pressure oxygen turbopump bearings
The reusable design of the Space Shuttle requires a target life of 7.5 hours for the turbopumps of the Space Shuttle main engine (SSME). This large increase from the few hundred seconds required in single-use rockets has caused various problems with the bearings of the turbopumps. The berings of the high pressure oxygen turbopump (HPOTP) were of particular concern because of wear, spalling, and cage failures at service time well below the required 7.5 hours. Lubrication and wear data were developed for the bearings. Since the HPOTP bearings operate in liquid oxygen, conventional liquid lubricants cannot be applied. Therefore, solid lubricant coatings and lubricant transfer from the polytetrafluorethylene (FTFE) cage were the primary lubrication approaches for the bearings. Measurements were made using liquid nitrogen in a rolling disk machine to determine whether usable elastohydrodynamic films could be generated to assist in the bearing lubrication
Observables for spacetimes with two Killing field symmetries
The Einstein equations for spacetimes with two commuting spacelike Killing
field symmetries are studied from a Hamiltonian point of view. The complexified
Ashtekar canonical variables are used, and the symmetry reduction is performed
directly in the Hamiltonian theory. The reduced system corresponds to the field
equations of the SL(2,R) chiral model with additional constraints.
On the classical phase space, a method of obtaining an infinite number of
constants of the motion, or observables, is given. The procedure involves
writing the Hamiltonian evolution equations as a single `zero curvature'
equation, and then employing techniques used in the study of two dimensional
integrable models. Two infinite sets of observables are obtained explicitly as
functionals of the phase space variables. One set carries sl(2,R) Lie algebra
indices and forms an infinite dimensional Poisson algebra, while the other is
formed from traces of SL(2,R) holonomies that commute with one another. The
restriction of the (complex) observables to the Euclidean and Lorentzian
sectors is discussed.
It is also shown that the sl(2,R) observables can be associated with a
solution generating technique which is linked to that given by Geroch.Comment: 23 pages (LateX-RevTeX), Alberta-Thy-55-9
- …
