533 research outputs found

    Computable solutions of fractional partial differential equations related to reaction-diffusion systems

    Full text link
    The object of this paper is to present a computable solution of a fractional partial differential equation associated with a Riemann-Liouville derivative of fractional order as the time-derivative and Riesz-Feller fractional derivative as the space derivative. The method followed in deriving the solution is that of joint Laplace and Fourier transforms. The solution is derived in a closed and computable form in terms of the H-function. It provides an elegant extension of the results given earlier by Debnath, Chen et al., Haubold et al., Mainardi et al., Saxena et al., and Pagnini et al. The results obtained are presented in the form of four theorems. Some results associated with fractional Schroeodinger equation and fractional diffusion-wave equation are also derived as special cases of the findings.Comment: 12 pages, Plain Te

    Space-time fractional reaction-diffusion equations associated with a generalized Riemann-Liouville fractional derivative

    Full text link
    This paper deals with the investigation of the computational solutions of an unified fractional reaction-diffusion equation, which is obtained from the standard diffusion equation by replacing the time derivative of first order by the generalized Riemann-Liouville fractional derivative defined in Hilfer et al. , and the space derivative of second order by the Riesz-Feller fractional derivative, and adding a function Ï•(x,t)\phi(x,t). The solution is derived by the application of the Laplace and Fourier transforms in a compact and closed form in terms of Mittag-Leffler functions. The main result obtained in this paper provides an elegant extension of the fundamental solution for the space-time fractional diffusion equation obtained earlier by Mainardi et al., and the result very recently given by Tomovski et al.. At the end, extensions of the derived results, associated with a finite number of Riesz-Feller space fractional derivatives, are also investigated.Comment: 15 pages, LaTe

    Unified Fractional Kinetic Equation and a Fractional Diffusion Equation

    Full text link
    In earlier papers Saxena et al. (2002, 2003) derived the solutions of a number of fractional kinetic equations in terms of generalized Mittag-Leffler functions which extended the work of Haubold and Mathai (2000). The object of the present paper is to investigate the solution of a unified form of fractional kinetic equation in which the free term contains any integrable function f(t), which provides the unification and extension of the results given earlier recently by Saxena et al. (2002, 2003). The solution has been developed in terms of the Wright function in a closed form by the method of Laplace transform. Further we derive a closed-form solution of a fractional diffusion equation. The asymptotic expansion of the derived solution with respect to the space variable is also discussed. The results obtained are in a form suitable for numerical computation.Comment: 13 pages, LaTe

    Boltzmann-Gibbs Entropy Versus Tsallis Entropy: Recent Contributions to Resolving the Argument of Einstein Concerning "Neither Herr Boltzmann nor Herr Planck has given a definition of W"?

    Full text link
    Classical statistical mechanics of macroscopic systems in equilibrium is based on Boltzmann's principle. Tsallis has proposed a generalization of Boltzmann-Gibbs statistics. Its relation to dynamics and nonextensivity of statistical systems are matters of intense investigation and debate. This essay review has been prepared at the occasion of awarding the 'Mexico Prize for Science and Technology 2003'to Professor Constantino Tsallis from the Brazilian Center for Research in Physics.Comment: 5 pages, LaTe
    • …
    corecore