40 research outputs found

    Detection of Wolbachia in the Tick Ixodes ricinus is Due to the Presence of the Hymenoptera Endoparasitoid Ixodiphagus hookeri

    Get PDF
    The identification of micro-organisms carried by ticks is an important issue for human and animal health. In addition to their role as pathogen vectors, ticks are also the hosts for symbiotic bacteria whose impact on tick biology is poorly known. Among these, the bacterium Wolbachia pipientis has already been reported associated with Ixodes ricinus and other tick species. However, the origins of Wolbachia in ticks and their consequences on tick biology (known to be very diverse in invertebrates, ranging from nutritional symbionts in nematodes to reproductive manipulators in insects) are unknown. Here we report that the endoparasitoid wasp Ixodiphagus hookeri (Hymenoptera, Chalcidoidea, Encyrtidae) – strictly associated with ticks for their development - is infested at almost 100% prevalence by a W. pipientis strain belonging to a Wolbachia supergroup that has already been reported as associated with other hymenopteran parasitoids. In a natural population of I. ricinus that suffers high parasitism rates due to I. hookeri, we used specific PCR primers for both hymenopteran and W. pipientis gene fragments to show that all unfed tick nymphs parasitized by I. hookeri also harbored Wolbachia, while unparasitized ticks were Wolbachia-free. We demonstrated experimentally that unfed nymphs obtained from larvae exposed to I. hookeri while gorging on their vertebrate host also harbor Wolbachia. We hypothesize that previous studies that have reported W. pipientis in ticks are due to the cryptic presence of the endoparasitoid wasp I. hookeri. This association has remained hidden until now because parasitoids within ticks cannot be detected until engorgement of the nymphs brings the wasp eggs out of diapause. Finally, we discuss the consequences of this finding for our understanding of the tick microbiome, and their possible role in horizontal gene transfer among pathogenic and symbiotic bacteria

    Tularemia

    No full text

    Tularemia

    No full text

    Mixing the Light Spin with Plasmon Orbit by Nonlinear Light-Matter Interaction in Gold

    No full text
    Transformation of light carrying spin angular momentum (SAM) to optical field vortices carrying orbital angular momentum (OAM) has been of wide interest in recent years. The interactions between two optical fields, each carrying one of those degrees of freedom, and furthermore, the transfer of the resulting angular momentum product to matter are seldom discussed. Here, we measure the interaction between 3D light carrying axial SAM and 2D plasmon-polariton vortices carrying high-order transverse OAM. The interaction is mediated by two-photon absorption within a gold surface, imprinting the resulting angular-momentum mixing into matter by excitation of electrons that are photo-emitted into vacuum. Interestingly, the spatial distribution of the emitted electrons carries the signature of a subtraction of the spin from the orbit angular momenta. We show experimentally and theoretically that the absorptive nature of this interaction leads to both single and double photon-plasmon angular momentum mixing processes by one- and two- photon interactions. Our results demonstrate high order angular momenta light-matter interactions, provide a glimpse into specific electronic excitation routes, and may be applied in future electronic sources and coherent control
    corecore