73 research outputs found
The invariant charges of the Nambu-Goto String and Canonical Quantization
It is shown that the algebra of diffeomorphism-invariant charges of the
Nambu-Goto string cannot be quantized in the framework of canonical
quantization. The argument is shown to be independent of the dimension of the
underlying Minkowski space.Comment: v2: reference adde
Conservation-laws-preserving algorithms for spin dynamics simulations
We propose new algorithms for numerical integration of the equations of
motion for classical spin systems with fixed spatial site positions. The
algorithms are derived on the basis of a mid-point scheme in conjunction with
the multiple time staging propagation. Contrary to existing predictor-corrector
and decomposition approaches, the algorithms introduced preserve all the
integrals of motion inherent in the basic equations. As is demonstrated for a
lattice ferromagnet model, the present approach appears to be more efficient
even over the recently developed decomposition method.Comment: 13 pages, 2 figure
The LQG -- String: Loop Quantum Gravity Quantization of String Theory I. Flat Target Space
We combine I. background independent Loop Quantum Gravity (LQG) quantization
techniques, II. the mathematically rigorous framework of Algebraic Quantum
Field Theory (AQFT) and III. the theory of integrable systems resulting in the
invariant Pohlmeyer Charges in order to set up the general representation
theory (superselection theory) for the closed bosonic quantum string on flat
target space. While we do not solve the, expectedly, rich representation theory
completely, we present a, to the best of our knowledge new, non -- trivial
solution to the representation problem. This solution exists 1. for any target
space dimension, 2. for Minkowski signature of the target space, 3. without
tachyons, 4. manifestly ghost -- free (no negative norm states), 5. without
fixing a worldsheet or target space gauge, 6. without (Virasoro) anomalies
(zero central charge), 7. while preserving manifest target space Poincar\'e
invariance and 8. without picking up UV divergences. The existence of this
stable solution is exciting because it raises the hope that among all the
solutions to the representation problem (including fermionic degrees of
freedom) we find stable, phenomenologically acceptable ones in lower
dimensional target spaces, possibly without supersymmetry, that are much
simpler than the solutions that arise via compactification of the standard Fock
representation of the string. Moreover, these new representations could solve
some of the major puzzles of string theory such as the cosmological constant
problem. The solution presented in this paper exploits the flatness of the
target space in several important ways. In a companion paper we treat the more
complicated case of curved target spaces.Comment: 46 p., LaTex2e, no figure
Part 2: CT characterisation of pancreatic neoplasm: tumour mimics
There are numerous pancreatic and peripancreatic conditions that can mimic pancreatic neoplasms. Many of these can be confidently diagnosed on computed tomography (CT), while others will require further imaging. Knowledge of these tumour mimics is important to avoid misclassification of benign conditions as malignant and to avoid unnecessary surgery. Mimics can be grouped as parenchymal, vascular, biliary and peripancreatic. These are discussed and illustrated in this review
Nutzung externer Datenbanken durch die Hochschulen in den neuen Bundeslaendern Abschlussbericht
SIGLEAvailable from TIB Hannover: DtF QN1(35,18) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Bildung, Wissenschaft, Forschung und Technologie, Bonn (Germany)DEGerman
- …