72 research outputs found

    Prevalence of Urinary Incontinence and Probable Risk Factors in a Sample of Kurdish Women

    Get PDF
    Objectives: The most common manifestation of pelvic floor dysfunction is urinary incontinence (UI) which affects 15–50% of adult women depending on the age and risk factors of the population studied. The aim of this study was to determine the probable risk factors associated with UI; the characteristics of women with UI; describe the types of UI, and determine its prevalence. Methods: A cross-sectional study was conducted between February and August 2011, in the Maternity Teaching Hospital of the Erbil Governorate, Kurdistan Region, northern Iraq. It included 1,107 women who were accompanying patients admitted to the hospital. A questionnaire designed by the researchers was used for data collection. A chi-square test was used to test the significance of the association between UI and different risk factors. Binary logistic regression was used, considering UI as the dependent variable. Results: The overall prevalence of UI was 51.7%. The prevalence of stress, urgency, and mixed UI was 5.4%, 13.3% and 33%, respectively. There was a significant positive association between UI and menopause, multiparity, diabetes mellitus (DM), chronic cough, constipation, and a history of gynaecological surgery, while a significant negative association was detected between UI and a history of delivery by both vaginal delivery and Caesarean section. Conclusion: A high prevalence of UI was detected in the studied sample, and the most probable risk factors were multiparity, menopausal status, constipation, chronic cough, and DM

    Inexpensive organic dyes-sensitized zinc oxide nanoparticles photoanode for solar cells devices

    Get PDF
    Zinc oxide nanoparticles (ZnO NPs) were synthesized using a hydrothermal route. The prepared ZnO NPs were characterized by x-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), UV–vis spectroscopy, and photoluminescence (PL) spectroscopy. The XRD patterns confirmed the standard hexagonal wurtzite structure of ZnO NPs, and the calculated value of the average particle size was 23.34 nm. HR-TEM micrographs of ZnO NPs showed semispherical particle morphologies and their sizes lie between 10 and 40 nm. The estimated average size distribution of ZnO NPs was 21.35 6.01 nm. UV–vis spectrum of ZnO NPs revealed the highest absorption band at 360.5 nm, and the Eg was 3.70 0.01 eV. The PL spectrum emission was deconvoluted by eight peaks into two regions [near-ultraviolet (NUV) and visible that caused from the defects]. Two groups of dye-sensitized solar cells (DSSCs) thin film devices based on ZnO NPs were sensitized in different concentration solutions of 0.1, 0.32, and 0.5 mM of eosin B (EB) and eosin Y (EY) dyes. The sensitized DSSCs device with 0.32-mM dye of EY displayed higher efficiency and its performance parameters are much better among all other fabricated DSSCs devices. The short current density (Jsc) increased from 1.59 to 4:97 mA∕cm2 and the Voc enhanced from 0.36 to 0.46 V. The conversion efficiency from light to electricity showed a significant improvement from 0.29% to 0.94%. The transient open circuit photovoltage decay (TOCPVD) was measured to estimate the apparent electron lifetime or response time (τn) or the electron recombination rate (krec), using the double exponential function for first time to fit the experiment data of TOCPVD. The results revealed that the EY dye can be used as an efficient and an inexpensive dye for DSSCs.This research activity carried out between Gaza and Cairo-Egypt was financially supported by Qatar Charity IBHATH Project grant funded by the Gulf Cooperation Council for the Reconstruction of Gaza through the Islamic Development Bank.Zinc oxide nanoparticles (ZnO NPs) were synthesized using a hydrothermal route. The prepared ZnO NPs were characterized by x-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), UV–vis spectroscopy, and photoluminescence (PL) spectroscopy. The XRD patterns confirmed the standard hexagonal wurtzite structure of ZnO NPs, and the calculated value of the average particle size was 23.34 nm. HR-TEM micrographs of ZnO NPs showed semispherical particle morphologies and their sizes lie between 10 and 40 nm. The estimated average size distribution of ZnO NPs was 21.35 6.01 nm. UV–vis spectrum of ZnO NPs revealed the highest absorption band at 360.5 nm, and the Eg was 3.70 0.01 eV. The PL spectrum emission was deconvoluted by eight peaks into two regions [near-ultraviolet (NUV) and visible that caused from the defects]. Two groups of dye-sensitized solar cells (DSSCs) thin film devices based on ZnO NPs were sensitized in different concentration solutions of 0.1, 0.32, and 0.5 mM of eosin B (EB) and eosin Y (EY) dyes. The sensitized DSSCs device with 0.32-mM dye of EY displayed higher efficiency and its performance parameters are much better among all other fabricated DSSCs devices. The short current density (Jsc) increased from 1.59 to 4:97 mA∕cm2 and the Voc enhanced from 0.36 to 0.46 V. The conversion efficiency from light to electricity showed a significant improvement from 0.29% to 0.94%. The transient open circuit photovoltage decay (TOCPVD) was measured to estimate the apparent electron lifetime or response time (τn) or the electron recombination rate (krec), using the double exponential function for first time to fit the experiment data of TOCPVD. The results revealed that the EY dye can be used as an efficient and an inexpensive dye for DSSCs

    Influence of Metal Ion Doping of Zinc Oxide Photoanode on the Efficiency of Dye Sensitized Solar Cell

    Get PDF
    Doping zinc oxide nanoparticles (ZnO NPs) and doped with Niobium (Nb5+) and Aluminium (Al3+) ions were synthesized to use as a photoanode for the Dye Sensitized Solar Cells (DSSCs). The structural of the synthetized samples were examined via X-ray diffraction (XRD). The XRD patterns for all samples confirmed the hexagonal wurtzite structure. The DSSCs based on the undoped and doped ZnO NPs were fabricated and assembled. Scanning electron microscopic (SEM) images were measured for all fabricated devices. The doping Nb5+ and Al3+ ions influenced the performance of the DSSCs. ZnO NPs doped Nb5+ led to higher surface area and hence more dye loading and retard the recombination of charges, which enhanced the open circuit voltage

    Landslide Risk Assessment by Using a New Combination Model Based on a Fuzzy Inference System Method

    Get PDF
    Landslides are one of the most dangerous phenomena that pose widespread damage to property and human lives. Over the recent decades, a large number of models have been developed for landslide risk assessment to prevent the natural hazards. These models provide a systematic approach to assess the risk value of a typical landslide. However, often models only utilize the numerical data to formulate a problem of landslide risk assessment and neglect the valuable information provided by experts’ opinion. This leads to an inherent uncertainty in the process of modelling. On the other hand, fuzzy inference systems are among the most powerful techniques in handling the inherent uncertainty. This paper develops a powerful model based on fuzzy inference system that uses both numerical data and subjective information to formulate the landslide risk more reliable and accurate. The results show that the proposed model is capable of assessing the landslide risk index. Likewise, the performance of the proposed model is better in comparison with that of the conventional techniques

    Predicting The Fracture Toughness of PNCs: A Stochastic Approach Based on ANN and ANFIS

    No full text
    Predicting The Fracture Toughness of PNCs: A Stochastic Approach Based on ANN and ANFI
    corecore