318 research outputs found
Subwavelength fractional Talbot effect in layered heterostructures of composite metamaterials
We demonstrate that under certain conditions, fractional Talbot revivals can
occur in heterostructures of composite metamaterials, such as multilayer
positive and negative index media, metallodielectric stacks, and
one-dimensional dielectric photonic crystals. Most importantly, without using
the paraxial approximation we obtain Talbot images for the feature sizes of
transverse patterns smaller than the illumination wavelength. A general
expression for the Talbot distance in such structures is derived, and the
conditions favorable for observing Talbot effects in layered heterostructures
is discussed.Comment: To be published in Phys. Rev.
The Flight Telerobotic Servicer (FTS) NASA's first operational robotic system
NASA has completed the preliminary definition phase of the Flight Telerobotic Servicer (FTS) and is now preparing to begin the detailed design and fabrication phase. The FTS will be designed and built by Martin Marietta Astronautics Group in Denver, CO, for the Goddard Space Flight Center, in support of the Space Station Freedom Program. The design concepts for the FTS are discussed, as well as operational scenarios for the assembly, maintenance, servicing and inspection tasks which are being considered for the FTS. The upcoming Development Test Flight (DTF-1) is the first of two shuttle test flights to test FTS operations in the environment of space and to demonstrate the FTS capabilities in performing tasks for Space Station Freedom. Operational planning for DTF-1 is discussed as well as development plans for the operational support of the FTS on the space station
Proximity effect in clean strong/weak/strong superconducting tri-layers
Recent measurements of the Josephson critical current through LSCO/LCO/LSCO
thin films showed an unusually large proximity effect. Using the Bogoliubov-de
Gennes (BdG) equations for a tight binding Hamiltonian we describe the
proximity effect in weak links between a superconductor with critical
temperature and one with critical temperature ', where '.
The weak link (N') is therefore a superconductor above its own critical
temperature and the superconducting regions are considered to have either
s-wave or d-wave symmetry. We note that the proximity effect is enhanced due to
the presence of superconducting correlations in the weak link. The dc Josephson
current is calculated, and we obtain a non-zero value for temperatures greater
than ' for sizes of the weak links that can be almost an order of
magnitude greater than the conventional coherence length. Considering pockets
of superconductivity in the N' layer, we show that this can lead to an even
larger effect on the Josephson critical current by effectively shortening the
weak link.Comment: submitted to Physical Review
Guided Modes of Elliptical Metamaterial Waveguides
The propagation of guided electromagnetic waves in open elliptical
metamaterial waveguide structures is investigated. The waveguide contains a
negative-index media core, where the permittivity, and permeability
are negative over a given bandwidth. The allowed mode spectrum for these
structures is numerically calculated by solving a dispersion relation that is
expressed in terms of Mathieu functions. By probing certain regions of
parameter space, we find the possibility exists to have extremely localized
waves that transmit along the surface of the waveguide
Stability of junction configurations in ferromagnet-superconductor heterostructures
We investigate the stability of possible order parameter configurations in
clean layered heterostructures of the type, where is a
superconductor and a ferromagnet. We find that for most reasonable values
of the geometric parameters (layer thicknesses and number) and of the material
parameters (such as magnetic polarization, wavevector mismatch, and oxide
barrier strength) several solutions of the {\it self consistent} microscopic
equations can coexist, which differ in the arrangement of the sequence of ``0''
and ``'' junction types (that is, with either same or opposite sign of the
pair potential in adjacent layers). The number of such coexisting self
consistent solutions increases with the number of layers. Studying the relative
stability of these configurations requires an accurate computation of the small
difference in the condensation free energies of these inhomogeneous systems. We
perform these calculations, starting with numerical self consistent solutions
of the Bogoliubov-de Gennes equations. We present extensive results for the
condensation free energies of the different possible configurations, obtained
by using efficient and accurate numerical methods, and discuss their relative
stabilities. Results for the experimentally measurable density of states are
also given for different configurations and clear differences in the spectra
are revealed. Comprehensive and systematic results as a function of the
relevant parameters for systems consisting of three and seven layers (one or
three junctions) are given, and the generalization to larger number of layers
is discussed.Comment: 17 pages, including 14 Figures. Higher resolution figures available
from the author
Has the nonlinear Meissner effect been observed?
We examine recent high-precision experimental data on the magnetic field,
, dependence of the penetration depth in
(YBCO) for several field directions in the
plane. In a new theoretical analysis that incorporates the effects of
orthorhombic symmetry, we show that the data at sufficiently high magnetic
fields and low temperatures are in quantitative agreement with the theoretical
predictions of the nonlinear Meissner effect.Comment: 4 text pages plus 3 postscript figure
Layered ferromagnet-superconductor structures: the state and proximity effects
We investigate clean mutilayered structures of the SFS and SFSFS type, (where
the S layer is intrinsically superconducting and the F layer is ferromagnetic)
through numerical solution of the self-consistent Bogoliubov-de Gennes
equations for these systems. We obtain results for the pair amplitude, the
local density of states, and the local magnetic moment. We find that as a
function of the thickness of the magnetic layers separating adjacent
superconductors, the ground state energy varies periodically between two stable
states. The first state is an ordinary "0-state", in which the order parameter
has a phase difference of zero between consecutive S layers, and the second is
a "-state", where the sign alternates, corresponding to a phase difference
of between adjacent S layers. This behavior can be understood from simple
arguments. The density of states and the local magnetic moment reflect also
this periodicity.Comment: 12 pages, 10 Figure
Anomalous density of states in a metallic film in proximity with a superconductor
We investigated the local electronic density of states in
superconductor-normal metal (Nb-Au) bilayers using a very low temperature (60
mK) STM. High resolution tunneling spectra measured on the normal metal (Au)
surface show a clear proximity effect with an energy gap of reduced amplitude
compared to the bulk superconductor (Nb) gap. Within this mini-gap, the density
of states does not reach zero and shows clear sub-gap features. We show that
the experimental spectra cannot be described with the well-established Usadel
equations from the quasi-classical theory.Comment: 4 pages, 5 figure
Supra-oscillatory critical temperature dependence of Nb-Ho bilayers
We investigate the critical temperature Tc of a thin s-wave superconductor
(Nb) proximity coupled to a helical rare earth ferromagnet (Ho). As a function
of the Ho layer thickness, we observe multiple oscillations of Tc superimposed
on a slow decay, that we attribute to the influence of the Ho on the Nb
proximity effect. Because of Ho inhomogeneous magnetization, singlet and
triplet pair correlations are present in the bilayers. We take both into
consideration when solving the self consistent Bogoliubov-de Gennes equations,
and we observe a reasonable agreement. We also observe non-trivial transitions
into the superconducting state, the zero resistance state being attained after
two successive transitions which appear to be associated with the magnetic
structure of Ho.Comment: Main article: 5 pages, 4 figures; Supplementary materials: 4 pages, 5
figure
Enhanced superconducting proximity effect in clean ferromagnetic domain structures
We investigate the superconducting proximity effect in a clean magnetic
structure consisting of two ferromagnetic layered domains with antiparallel
magnetizations in contact with a superconductor. Within the quasiclassical
Green's function approach we find that the penetration of the superconducting
correlations into the magnetic domains can be enhanced as compared to the
corresponding single domain structure. This enhancement depends on an effective
exchange field which is determined by the thicknesses and the exchange fields
of the two domains. The pair amplitude function oscillates spatially inside
each domain with a period inversely proportional to the local exchange field.
While the oscillations have a decreasing amplitude with distance inside the
domain which is attached to the superconductor, they are enhancing in the other
domain and can reach the corresponding normal metal value for a zero effective
exchange field. We also find that the corresponding oscillations in the Fermi
level proximity density of states as a function of the second domain's
thickness has an growing amplitude over a range which depends on the effective
exchange field. Our findings can be explained as the result of cancellation of
the exchange fields induced phases gained by an electron inside the two domains
with antiparallel magnetizations.Comment: 7 pages, 4 figure
- …