6,750 research outputs found

    A search for energy-dependence of the Kes 73/1E 1841-045 morphology in GeV

    Full text link
    While the Kes 73/1E 1841-045 system had been confirmed as an extended GeV source, whether its morphology depends on the photon energy or not deserves our further investigation. Adopting data collected by Fermi Large Area Telescope (LAT) again, we look into the extensions of this source in three energy bands individually: 0.3-1 GeV, 1-3 GeV and 3-200 GeV. We find that the 0.3-1 GeV morphology is point-like and is quite different from those in the other two bands, although we cannot robustly reject a unified morphology for the whole LAT band.Comment: Approved for publication in PoS as a proceeding of the 7th International Fermi Symposium (IFS2017

    Fermi Large Area Telescope Observations of the Fast-dimming Crab Nebula in 60-600 MeV

    Full text link
    Context: The Crab pulsar and its nebula are the origin of relativistic electrons which can be observed through their synchrotron and inverse Compton emission. The transition between synchrotron-dominated and inverse-Compton-dominated emissions takes place at 109\approx 10^9 eV. Aims: The short-term (weeks to months) flux variability of the synchrotron emission from the most energetic electrons is investigated with data from ten years of observations with the Fermi Large Area Telescope (LAT) in the energy range from 60 MeV to 600 MeV. Methods: The off-pulse light-curve has been reconstructed from phase-resolved data. The corresponding histogram of flux measurements is used to identify distributions of flux-states and the statistical significance of a lower-flux component is estimated with dedicated simulations of mock light-curves. The energy spectra for different flux states are reconstructed. Results: We confirm the presence of flaring-states which follow a log-normal flux distribution. Additionally, we discover a low-flux state where the flux drops to as low as 18.4% of the intermediate-state average flux and stays there for several weeks. The transition time is observed to be as short as 2 days. The energy spectrum during the low-flux state resembles the extrapolation of the inverse-Compton spectrum measured at energies beyond several GeV energy, implying that the high-energy part of the synchrotron emission is dramatically depressed. Conclusions: The low-flux state found here and the transition time of at most 10 days indicate that the bulk (>75>75%) of the synchrotron emission above 10810^8 eV originates in a compact volume with apparent angular size of θ0.4"tvar/(5d)\theta\approx0.4" t_\mathrm{var}/(5 \mathrm{d}). We tentatively infer that the so-called inner knot feature is the origin of the bulk of the γ\gamma-ray emission.Comment: Accepted by A&A on 05.05.2020; Original version submitted on 19.09.201

    Self-Organization of Balanced Nodes in Random Networks with Transportation Bandwidths

    Full text link
    We apply statistical physics to study the task of resource allocation in random networks with limited bandwidths along the transportation links. The mean-field approach is applicable when the connectivity is sufficiently high. It allows us to derive the resource shortage of a node as a well-defined function of its capacity. For networks with uniformly high connectivity, an efficient profile of the allocated resources is obtained, which exhibits features similar to the Maxwell construction. These results have good agreements with simulations, where nodes self-organize to balance their shortages, forming extensive clusters of nodes interconnected by unsaturated links. The deviations from the mean-field analyses show that nodes are likely to be rich in the locality of gifted neighbors. In scale-free networks, hubs make sacrifice for enhanced balancing of nodes with low connectivity.Comment: 7 pages, 8 figure

    Inferring the origins of the pulsed gamma-ray emission from the Crab pulsar with 10-year Fermi LAT data

    Full text link
    Context: The Crab pulsar is a bright γ\gamma-ray source detected at photon energies up to \sim1 TeV. Its phase-averaged and phase-resolved γ\gamma-ray spectra below 10 GeV exhibit exponential cutoffs while those above 10 GeV apparently follow simple power-laws. Aims: We re-visit the γ\gamma-ray properties of the Crab pulsar with 10-year \emph{Fermi} Large Area Telescope (LAT) data in the range of 60 MeV--500 GeV. With the phase-resolved spectra, we investigate the origins and mechanisms responsible for the emissions. Methods: The phaseograms are reconstructed for different energy bands and further analysed using a wavelet decomposition. The phase-resolved energy spectra are combined with the observations of ground-based instruments like MAGIC and VERITAS to achieve a larger energy converage. We fit power-law models to the overlapping energy spectra from 10 GeV to \sim1 TeV. We include in the fit a relative cross-calibration of energy scales between air-shower based gamma-ray telescopes with the orbital pair-production telescope of the Fermi mission. Results: We confirm the energy-dependence of the γ\gamma-ray pulse shape, and equivalently, the phase-dependence of the spectral shape for the Crab pulsar. A relatively sharp cutoff at a relatively high energy of \sim8 GeV is observed for the bridge-phase emission. The E>E>10 GeV spectrum observed for the second pulse peak is harder than those for other phases. Conclusions: In view of the diversity of phase-resolved spectral shapes of the Crab pulsar, we tentatively propose a multi-origin scenario where the polar-cap, outer-gap and relativistic-wind regions are involved.Comment: Original article published in A&A on 10.08.2020; Data values available at CDS via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/640/A43 ; Erratum (at the back) accepted by A&A on 10.03.2021; Sincere gratitude is given to D. Horns for his encouragement regarding my submission as a single autho

    Models of Financial Markets with Extensive Participation Incentives

    Full text link
    We consider models of financial markets in which all parties involved find incentives to participate. Strategies are evaluated directly by their virtual wealths. By tuning the price sensitivity and market impact, a phase diagram with several attractor behaviors resembling those of real markets emerge, reflecting the roles played by the arbitrageurs and trendsetters, and including a phase with irregular price trends and positive sums. The positive-sumness of the players' wealths provides participation incentives for them. Evolution and the bid-ask spread provide mechanisms for the gain in wealth of both the players and market-makers. New players survive in the market if the evolutionary rate is sufficiently slow. We test the applicability of the model on real Hang Seng Index data over 20 years. Comparisons with other models show that our model has a superior average performance when applied to real financial data.Comment: 17 pages, 16 figure

    Coarsening Dynamics of a One-Dimensional Driven Cahn-Hilliard System

    Full text link
    We study the one-dimensional Cahn-Hilliard equation with an additional driving term representing, say, the effect of gravity. We find that the driving field EE has an asymmetric effect on the solution for a single stationary domain wall (or `kink'), the direction of the field determining whether the analytic solutions found by Leung [J.Stat.Phys.{\bf 61}, 345 (1990)] are unique. The dynamics of a kink-antikink pair (`bubble') is then studied. The behaviour of a bubble is dependent on the relative sizes of a characteristic length scale E1E^{-1}, where EE is the driving field, and the separation, LL, of the interfaces. For EL1EL \gg 1 the velocities of the interfaces are negligible, while in the opposite limit a travelling-wave solution is found with a velocity vE/Lv \propto E/L. For this latter case (EL1EL \ll 1) a set of reduced equations, describing the evolution of the domain lengths, is obtained for a system with a large number of interfaces, and implies a characteristic length scale growing as (Et)1/2(Et)^{1/2}. Numerical results for the domain-size distribution and structure factor confirm this behavior, and show that the system exhibits dynamical scaling from very early times.Comment: 20 pages, revtex, 10 figures, submitted to Phys. Rev.
    corecore