133 research outputs found

    Reductive transformation of birnessite by low-molecular organic acids

    Get PDF
    Mn(IV)-oxides are highly redox-active minerals, which are often reductively dissolved during biogeochemical processes, resulting in the release of Mn2+ and associated compounds into the aqueous phase. Mn2+ is known to reductively transform birnessite (MnO2) into metastable feitknechtite (β-MnOOH) and manganite (γ-MnOOH). Natural solutions, e.g. in soils, contain highly reactive low molecular weight organic acids like lactate. We investigated the impact of lactate on the transformation of birnessite under laboratory conditions during a period of 500 d. We found that birnessite was reductively transformed into feitknechtite, which subsequently transformed into the more stable manganite, without any release of Mn2+. Lactate served as the electron donor and was oxidized into pyruvate and acetate. Metals previously adsorbed to the birnessite’s surface were released during the transformation. The coupled reductive transformation of short ranged ordered minerals like birnessite with the abiotic oxidation of lactate might be an important process controlling the abundance of low molecular weight organic acids in natural systems besides their microbial consumption uptake. Our results further indicate, that the reduction of Mn(IV)-oxides does not exclusively result in their dissolution but instead in the formation of more stable Mn(III)-oxides

    In-situ bandaged Josephson junctions for superconducting quantum processors

    Get PDF
    Shadow evaporation is commonly used to micro-fabricate the key element of superconducting qubits—the Josephson junction. However, in conventional two-angle deposition circuit topology, unwanted stray Josephson junctions are created which contribute to dielectric loss. So far, this could be avoided by shorting the stray junctions with a so-called bandage layer deposited in an additional lithography step, which may further contaminate the chip surface. Here, we present an improved shadow evaporation technique allowing one to fabricate sub-micrometer-sized Josephson junctions together with bandage layers in a single lithography step. We also show that junction aging is significantly reduced when junction electrodes are passivated in an oxygen atmosphere directly after deposition

    Age-related changes in global motion coherence: conflicting haemodynamic and perceptual responses

    Get PDF
    Our aim was to use both behavioural and neuroimaging data to identify indicators of perceptual decline in motion processing. We employed a global motion coherence task and functional Near Infrared Spectroscopy (fNIRS). Healthy adults (n = 72, 18-85) were recruited into the following groups: young (n = 28, mean age = 28), middle-aged (n = 22, mean age = 50), and older adults (n = 23, mean age = 70). Participants were assessed on their motion coherence thresholds at 3 different speeds using a psychophysical design. As expected, we report age group differences in motion processing as demonstrated by higher motion coherence thresholds in older adults. Crucially, we add correlational data showing that global motion perception declines linearly as a function of age. The associated fNIRS recordings provide a clear physiological correlate of global motion perception. The crux of this study lies in the robust linear correlation between age and haemodynamic response for both measures of oxygenation. We hypothesise that there is an increase in neural recruitment, necessitating an increase in metabolic need and blood flow, which presents as a higher oxygenated haemoglobin response. We report age-related changes in motion perception with poorer behavioural performance (high motion coherence thresholds) associated with an increased haemodynamic response

    Selection-Independent Generation of Gene Knockout Mouse Embryonic Stem Cells Using Zinc-Finger Nucleases

    Get PDF
    Gene knockout in murine embryonic stem cells (ESCs) has been an invaluable tool to study gene function in vitro or to generate animal models with altered phenotypes. Gene targeting using standard techniques, however, is rather inefficient and typically does not exceed frequencies of 10−6. In consequence, the usage of complex positive/negative selection strategies to isolate targeted clones has been necessary. Here, we present a rapid single-step approach to generate a gene knockout in mouse ESCs using engineered zinc-finger nucleases (ZFNs). Upon transient expression of ZFNs, the target gene is cleaved by the designer nucleases and then repaired by non-homologous end-joining, an error-prone DNA repair process that introduces insertions/deletions at the break site and therefore leads to functional null mutations. To explore and quantify the potential of ZFNs to generate a gene knockout in pluripotent stem cells, we generated a mouse ESC line containing an X-chromosomally integrated EGFP marker gene. Applying optimized conditions, the EGFP locus was disrupted in up to 8% of ESCs after transfection of the ZFN expression vectors, thus obviating the need of selection markers to identify targeted cells, which may impede or complicate downstream applications. Both activity and ZFN-associated cytotoxicity was dependent on vector dose and the architecture of the nuclease domain. Importantly, teratoma formation assays of selected ESC clones confirmed that ZFN-treated ESCs maintained pluripotency. In conclusion, the described ZFN-based approach represents a fast strategy for generating gene knockouts in ESCs in a selection-independent fashion that should be easily transferrable to other pluripotent stem cells

    Predicting Transitions in Low and High Levels of Risk Behavior from Early to Middle Adolescence: The TRAILS Study

    Get PDF
    The present study examined the joint development of substance use and externalizing problems in early and middle adolescence. First, it was tested whether the relevant groups found in previous studies i.e., those with an early onset, a late onset, and no onset or low levels of risk behavior could be identified, while using a developmental model of a single, underlying construct of risk behavior. Second, departing from Moffitt’s taxonomy of antisocial behavior, it was tested if early, but not late, onset risk behavior is predicted by a problematic risk profile in childhood. Data were used from TRAILS, a population based cohort study, starting at age 11 with two follow-ups at mean ages of 13.6 and 16.3 years. Latent transition analyses demonstrated that, both in early and middle adolescence, a single underlying construct of risk behavior, consisting of two classes (labeled as low and high risk behavior), adequately represented the data. Respondents could be clearly classified into four possible transition patterns from early to middle adolescence, with a transition from high to low being almost non-existent (2.5 %), low to low (39.4 %) and low to high (41.8 %) being the most prevalent, and high to high (16.2 %) substantial. As hypothesized, only the high-high group was characterized by a clear adverse predictor profile in late childhood, while the low-high group was not. This study demonstrates that the development of substance use is correlated with externalizing problems and underscores the theory that etiologies of early and later onset risk behavior are different

    Adult Type 3 Adenylyl Cyclase–Deficient Mice Are Obese

    Get PDF
    Background: A recent study of obesity in Swedish men found that polymorphisms in the type 3 adenylyl cyclase (AC3) are associated with obesity, suggesting the interesting possibility that AC3 may play a role in weight control. Therefore, we examined the weight of AC3 mice over an extended period of time. Methodology/Principal Findings: We discovered that AC3 2/2 mice become obese as they age. Adult male AC3 2/2 mice are about 40 % heavier than wild type male mice while female AC3 2/2 are 70 % heavier. The additional weight of AC3 2/2 mice is due to increased fat mass and larger adipocytes. Before the onset of obesity, young AC3 2/2 mice exhibit reduced physical activity, increased food consumption, and leptin insensitivity. Surprisingly, the obesity of AC3 2/2 mice is not due to a loss of AC3 from white adipose and a decrease in lipolysis. Conclusions/Significance: We conclude that mice lacking AC3 exhibit obesity that is apparently caused by low locomotor activity, hyperphagia, and leptin insensitivity. The presence of AC3 in primary cilia of neurons of the hypothalamus suggests that cAMP signals generated by AC3 in the hypothalamus may play a critical role in regulation of body weight

    DISC1 genetics, biology and psychiatric illness

    Get PDF
    Psychiatric disorders are highly heritable, and in many individuals likely arise from the combined effects of genes and the environment. A substantial body of evidence points towards DISC1 being one of the genes that influence risk of schizophrenia, bipolar disorder and depression, and functional studies of DISC1 consequently have the potential to reveal much about the pathways that lead to major mental illness. Here, we review the evidence that DISC1 influences disease risk through effects upon multiple critical pathways in the developing and adult brain

    A Spatial Distribution Study of Faunal Remains from Two Lower Magdalenian Occupation Levels in El Mirón Cave, Cantabria, Spain

    Get PDF
    Abstract: Human behaviour can be reconstructed by analysing specific activities and campsite organization using spatial analysis. The dense occupation layers of the Lower Cantabrian Magdalenian in the Northern Spain reveal varied aspects of Upper Palaeolithic lifeways, including evidence of specific localized activities. The outer vestibule of El Mirón cave has a particularly rich and intact Lower Magdalenian occupation horizon, Levels 15–17. The excavations in the outer vestibule “Cabin” area of the site revealed excellent bone preservation. Artefacts and faunal remains were individually recorded and sediments water-screened to yield a large sample of archaeological finds and spatial data. Zooarchaeological analysis provided the taxonomic, anatomic and taphonomic determination of the faunal individual finds. Smaller animal remains were categorized and counted; special attention was given to the identification of anthropogenic modifications such as burnt bones or bone flakes. These small refuse items are considered to be useful, in situ indicators of localized activities. The spatial distribution analysis of this dense and complex palimpsest of El Mirón Lower Cantabrian Magdalenian layers required GIS based methods including density analysis, heatmaps and cluster analysis. Based on the spatial distribution of Level 15 and 16 faunal remains, different activity areas were identified comprising hearth, working and dropping zones. These results imply the deliberately segregated use of space within the Lower Cantabrian Magdalenian site area, in which bone-processing activities played a central rol
    corecore