276 research outputs found
An All-Cryogenic THz Transmission Spectrometer
This paper describes a THz transmission spectrometer for the spectral range
of 2-65 cm^-1 (100 GHz to 2 THz) with a spectral resolution of at least 1.8
cm^-1 (50 GHz) where the source, sample, and detector are all fully contained
in a cryogenic environment. Cyclotron emission from a two-dimensional electron
gas heated with an electrical current serves as a magnetic field tunable
source. The spectrometer is demonstrated at 4.2 K by measuring the resonant
cyclotron absorption of a second two dimensional electron gas. Unique aspects
of the spectrometer are that 1) an ultra-broadband detector is used and 2) the
emitter is run quasi-continuously with a chopping frequency of only 1 Hz. Since
optical coupling to room temperature components is not necessary, this
technique is compatible with ultra-low temperature (sub 100 mK) operation.Comment: 7 pages, 5 figures. Author affiliation and funding acknowledgements
clarifie
Infrared emission spectrum and potentials of and states of Xe excimers produced by electron impact
We present an investigation of the Xe excimer emission spectrum
observed in the near infrared range about 7800 cm in pure Xe gas and in
an Ar (90%) --Xe (10%) mixture and obtained by exciting the gas with energetic
electrons. The Franck--Condon simulation of the spectrum shape suggests that
emission stems from a bound--free molecular transition never studied before.
The states involved are assigned as the bound state with atomic limit and the dissociative state with limit. Comparison with the spectrum simulated by using theoretical
potentials shows that the dissociative one does not reproduce correctly the
spectrum features.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems
A general electrodynamic theory of a grating coupled two dimensional electron
system (2DES) is developed. The 2DES is treated quantum mechanically, the
grating is considered as a periodic system of thin metal strips or as an array
of quantum wires, and the interaction of collective (plasma) excitations in the
system with electromagnetic field is treated within the classical
electrodynamics. It is assumed that a dc current flows in the 2DES. We consider
a propagation of an electromagnetic wave through the structure, and obtain
analytic dependencies of the transmission, reflection, absorption and emission
coefficients on the frequency of light, drift velocity of 2D electrons, and
other physical and geometrical parameters of the system. If the drift velocity
of 2D electrons exceeds a threshold value, a current-driven plasma instability
is developed in the system, and an incident far infrared radiation is
amplified. We show that in the structure with a quantum wire grating the
threshold velocity of the amplification can be essentially reduced, as compared
to the commonly employed metal grating, down to experimentally achievable
values. Physically this is due to a considerable enhancement of the grating
coupler efficiency because of the resonant interaction of plasma modes in the
2DES and in the grating. We show that tunable far infrared emitters, amplifiers
and generators can thus be created at realistic parameters of modern
semiconductor heterostructures.Comment: 28 pages, 15 figures, submitted to Phys. Rev.
Functional studies on the role of Notch signaling in Hydractinia development
The function of Notch signaling was previously studied in two cnidarians, Hydra and Nematostella, representing the lineages Hydrozoa and Anthozoa, respectively. Using pharmacological inhibition in Hydra and a combination of pharmacological and genetic approaches in Nematostella, it was shown in both animals that Notch is required for tentacle morphogenesis and for late stages of stinging cell maturation. Surprisingly, a role for Notch in neural development, which is well documented in bilaterians, was evident in embryonic Nematostella but not in adult Hydra. Adult neurogenesis in the latter seemed to be unaffected by DAPT, a drug that inhibits Notch signaling. To address this apparent discrepancy, we studied the role of Notch in Hydractinia echinata, an additional hydrozoan, in all life stages. Using CRISPR-Cas9 mediated mutagenesis, transgenesis, and pharmacological interference we show that Notch is dispensable for Hydractinia normal neurogenesis in all life stages but is required for the maturation of stinging cells and for tentacle morphogenesis. Our results are consistent with a conserved role for Notch in morphogenesis and nematogenesis across Cnidaria, and a lineage-specific loss of Notch dependence in neurogenesis in hydrozoans
Genomics Meets Glycomics—The First GWAS Study of Human N-Glycome Identifies HNF1α as a Master Regulator of Plasma Protein Fucosylation
Over half of all proteins are glycosylated, and alterations in glycosylation have been observed in numerous physiological and pathological processes. Attached glycans significantly affect protein function; but, contrary to polypeptides, they are not directly encoded by genes, and the complex processes that regulate their assembly are poorly understood. A novel approach combining genome-wide association and high-throughput glycomics analysis of 2,705 individuals in three population cohorts showed that common variants in the Hepatocyte Nuclear Factor 1α (HNF1α) and fucosyltransferase genes FUT6 and FUT8 influence N-glycan levels in human plasma. We show that HNF1α and its downstream target HNF4α regulate the expression of key fucosyltransferase and fucose biosynthesis genes. Moreover, we show that HNF1α is both necessary and sufficient to drive the expression of these genes in hepatic cells. These results reveal a new role for HNF1α as a master transcriptional regulator of multiple stages in the fucosylation process. This mechanism has implications for the regulation of immunity, embryonic development, and protein folding, as well as for our understanding of the molecular mechanisms underlying cancer, coronary heart disease, and metabolic and inflammatory disorders
Home bitter home? Gender, living arrangements, and the exclusion from homeownership among older Europeans
Abstract Homeownership is the most important asset among the elderly in Europe, but very little is known about gender and living arrangement differences in this domain. This paper aims at exploring patterns of exclusion from homeownership among middle-aged and older Europeans from a gender perspective, and with a special focus on their household composition. The analysis is based on the fourth wave of the “Survey of Health, Aging and Retirement in Europe” and includes a sub-sample of about 56,000 individuals aged 50 or over, living in 16 European countries. We estimated a set of multinomial logit models to examine the probability of being either tenant or rent-free occupiers versus homeowners. Our findings show that women are generally more likely to be excluded from homeownership than men. Nevertheless, a closer look suggests that the gender gap in homeownership is essentially generated by compositional differences between men and women, with the most relevant factor being household type. Older women are almost as twice as likely as men to live alone, which is associated—other things being equal—with a particular low likelihood to be homeowners virtually in every European country
Decreased serum cell-free DNA levels in rheumatoid arthritis
Purpose: Recent studies have demonstrated that serum/plasma DNA and RNA molecules in addition to proteins can serve as biomarkers. Elevated levels of these nucleic acids have been found not only in acute, but also in chronic conditions, including autoimmune diseases. The aim of this study was to assess cell-free DNA (cfDNA) levels in sera of rheumatoid arthritis (RA) patients compared to controls. Methods: cfDNA was extracted from sera of patients with early and established RA, relapsing-remitting multiple sclerosis patients (RRMS) and healthy subjects, and its concentration was determined by quantitative PCR using two amplicons, Alu115 and β-actin205, corresponding to Alu repetitive elements and the β-actin single-copy gene, respectively. Serum DNase activity was measured by a single radial enzyme diffusion method. Results: Reduced levels of cfDNA were observed in patients with establi
- …