17 research outputs found

    Mechanism of Assembly of the Dimanganese-Tyrosyl Radical Cofactor of Class Ib Ribonucleotide Reductase: Enzymatic Generation of Superoxide Is Required for Tyrosine Oxidation via a Mn(III)Mn(IV) Intermediate

    Get PDF
    Ribonucleotide reductases (RNRs) utilize radical chemistry to reduce nucleotides to deoxynucleotides in all organisms. In the class Ia and Ib RNRs, this reaction requires a stable tyrosyl radical (Y•) generated by oxidation of a reduced dinuclear metal cluster. The Fe[superscript III][subscript 2]-Y• cofactor in the NrdB subunit of the class Ia RNRs can be generated by self-assembly from Fe[superscript II][subscript 2]-NrdB, O[subscript 2], and a reducing equivalent. By contrast, the structurally homologous class Ib enzymes require a Mn[superscript III][subscript 2]-Y• cofactor in their NrdF subunit. Mn[superscript II][subscript 2]-NrdF does not react with O[subscript 2], but it binds the reduced form of a conserved flavodoxin-like protein, NrdI[subscript hq], which, in the presence of O[subscript 2], reacts to form the Mn[superscript III][subscript 2]-Y• cofactor. Here we investigate the mechanism of assembly of the Mn[superscript III][subscript 2]-Y• cofactor in Bacillus subtilis NrdF. Cluster assembly from Mn[superscript II][subscript 2]-NrdF, NrdI[subscript hq], and O[subscript 2] has been studied by stopped flow absorption and rapid freeze quench EPR spectroscopies. The results support a mechanism in which NrdI[subscript hq] reduces O[subscript 2] to O[subscript 2]•– (40–48 s[superscript –1], 0.6 mM O[subscript 2]), the O[subscript 2]•– channels to and reacts with Mn[superscript II][subscript 2]-NrdF to form a Mn[superscript III]Mn[superscript IV] intermediate (2.2 ± 0.4 s[superscript –1]), and the Mn[superscript III]Mn[superscript IV] species oxidizes tyrosine to Y• (0.08–0.15 s[superscript –1]). Controlled production of O[subscript 2]•– by NrdI[subscript hq] during class Ib RNR cofactor assembly both circumvents the unreactivity of the Mn[superscript II][subscript 2] cluster with O[subscript 2] and satisfies the requirement for an “extra” reducing equivalent in Y• generation.National Institutes of Health (U.S.) (Grant GM81393)United States. Dept. of Defense (National Defense Science and Engineering Graduate (NDSEG) Fellowships

    Only strongly enhanced residual FDG uptake in early response PET (Deauville 5 or qPET ≥ 2) is prognostic in pediatric Hodgkin lymphoma: Results of the GPOH-HD2002 trial.

    No full text
    PURPOSE In 2014, we published the qPET method to quantify fluorodeoxyglucose positron emission tomography (FDG-PET) responses. Analysis of the distribution of the quantified signals suggested that a clearly abnormal FDG-PET response corresponds to a visual Deauville score (vDS) of 5 and high qPET values ≥ 2. Evaluation in long-term outcome data is still pending. Therefore, we analyzed progression-free survival (PFS) by early FDG-PET response in a subset of the GPOH-HD2002 trial for pediatric Hodgkin lymphoma (PHL). PATIENTS/METHODS Pairwise FDG-PET scans for initial staging and early response assessment after two cycles of chemotherapy were available in 93 PHL patients. vDS and qPET measurement were performed and related to PFS. RESULTS Patients with a qPET value ≥ 2.0 or vDS of 5 had 5-year PFS rates of 44%, respectively 50%. Those with qPET values < 2.0 or vDS 1 to 4 had 5-year PFS rates of 90%, respectively 80%. The positive predictive value of FDG-PET response assessment increased from 18% (9%; 33%) using a qPET threshold of 0.95 (vDS ≤ 3) to 30% (13%; 54%) for a qPET threshold of 1.3 (vDS ≤ 4) and to 56% (23%; 85%) when the qPET threshold was ≥ 2.0 (vDS 5). The negative predictive values remained stable at ≥92% (CI: 82%; 98%). CONCLUSION Only strongly enhanced residual FDG uptake in early response PET (vDS 5 or qPET ≥ 2, respectively) seems to be markedly prognostic in PHL when treatment according to the GPOH-HD-2002 protocol is given

    Genome-wide Association Study Identifies 2 New Loci Associated With Anti-NMDAR Encephalitis

    No full text
    Background and Objectives To investigate the genetic determinants of the most common type of antibody-mediated autoimmune encephalitis, anti-NMDA receptor (anti-NMDAR) encephalitis. Methods We performed a genome-wide association study in 178 patients with anti-NMDAR encephalitis and 590 healthy controls, followed by a colocalization analysis to identify putatively causal genes. Results We identified 2 independent risk loci harboring genome-wide significant variants (p = 2.2), 1 on chromosome 15, harboring only the LRRK1 gene, and 1 on chromosome 11 centered on the ACP2 and NR1H3 genes in a larger region of high linkage disequilibrium. Colocalization signals with expression quantitative trait loci for different brain regions and immune cell types suggested ACP2, NR1H3, MADD, DDB2, and C11orf49 as putatively causal genes. The best candidate genes in each region are LRRK1, encoding leucine-rich repeat kinase 1, a protein involved in B-cell development, and NR1H3 liver X receptor alpha, a transcription factor whose activation inhibits inflammatory processes. Discussion This study provides evidence for relevant genetic determinants of antibody-mediated autoimmune encephalitides outside the human leukocyte antigen (HLA) region. The results suggest that future studies with larger sample sizes will successfully identify additional genetic determinants and contribute to the elucidation of the pathomechanism
    corecore