941 research outputs found

    Individual Characteristics and Stated Preferences for Alternative Energy Sources and Propulsion Technologies in Vehicles: A Discrete Choice Analysis

    Full text link
    This paper empirically examines the determinants of the demand for alternative energy sources and propulsion technologies in vehicles. The data stem from a stated preference discrete choice experiment with 598 potential car buyers. In order to simulate a realistic automobile purchase situation, seven alternatives were incorporated in each of the six choice sets, i.e. hybrid, gas, biofuel, hydrogen, and electric as well as the common fuels gasoline and diesel. The vehicle types were additionally characterized by a set of attributes, such as purchase price or motor power. Besides these vehicle attributes, our study particularly considers a multitude of individual characteristics, such as socio-demographic and vehicle purchase variables. The econometric analysis with multinomial probit models identifies some population groups with a higher propensity for alternative energy sources or propulsion technologies in vehicles, which can be focused by policy and automobile firms. For example, younger people and people who usually purchase environment-friendly products have a higher stated preference to purchase biofuel, hydrogen, and electric automobiles than other population groups. Methodologically, our study highlights the importance of the inclusion of taste persistence across the choice sets. Furthermore, it suggests a high number of random draws in the Geweke-Hajivassiliou-Keane simulator, which is incorporated in the simulated maximum likelihood estimation and the simulated testing of statistical hypotheses

    The Multinomial Multiperiod Probit Model: Identification and Efficient Estimation

    Full text link
    In this paper we discuss parameter identification and likelihood evaluation for multinomial multiperiod Probit models. It is shown in particular that the standard autoregressive specification used in the literature can be interpreted as a latent common factor model. However, this specification is not invariant with respect to the selection of the baseline category. Hence, we propose an alternative specification which is invariant with respect to such a selection and identifies coefficients characterizing the stationary covariance matrix which are not identified in the standard approach. For likelihood evaluation requiring high-dimensional truncated integration we propose to use a generic procedure known as Efficient Importance Sampling (EIS). A special case of our proposed EIS algorithm is the standard GHK probability simulator. To illustrate the relative performance of both procedures we perform a set Monte-Carlo experiments. Our results indicate substantial numerical e?ciency gains of the ML estimates based on GHK-EIS relative to ML estimates obtained by using GHK

    A Link to the Past: Using Markov Chain Monte Carlo Fitting to Constrain Fundamental Parameters of High-Redshift Galaxies

    Get PDF
    We have a developed a new method for fitting spectral energy distributions (SEDs) to identify and constrain the physical properties of high-redshift (4 < z < 8) galaxies. Our approach uses an implementation of Bayesian based Markov Chain Monte Carlo (PiMC^2) that allows us to compare observations to arbitrarily complex models and to compute 95% credible intervals that provide robust constraints for the model parameters. The work is presented in 2 sections. In the first, we test PiMC^2 using simulated SEDs to not only confirm the recovery of the known inputs but to assess the limitations of the method and identify potential hazards of SED fitting when applied specifically to high redshift (z>4) galaxies. Our tests reveal five critical results: 1) the ability to confidently constrain metallicity, population ages, and Av all require photometric accuracy better than what is currently achievable (i.e. less than a few percent); 2) the ability to confidently constrain stellar masses (within a factor of two) can be achieved without the need for high-precision photometry; 3) the addition of IRAC photometry does not guarantee that tighter constraints of the stellar masses and ages can be defined; 4) different assumptions about the star formation history can lead to significant biases in mass and age estimates; and 5) we are able to constrain stellar age and Av of objects that are both young and relatively dust free. In the second part of the paper we apply PiMC^2 to 17 4<z<8 objects, including the GRAPES Ly alpha sample (4<z<6), supplemented by HST/WFC3 near-IR observations, and several broad band selected z>6 galaxies. Using PiMC^2, we are able to constrain the stellar mass of these objects and in some cases their stellar age and find no evidence that any of these sources formed at a redshift much larger than z_f=8, a time when the Universe was ~ 0.6 Gyr old.Comment: Submitted to ApJ (Full abstract, 47 pages, 17 figures, 7 tables

    Beyond element-wise interactions: identifying complex interactions in biological processes

    Get PDF
    Background: Biological processes typically involve the interactions of a number of elements (genes, cells) acting on each others. Such processes are often modelled as networks whose nodes are the elements in question and edges pairwise relations between them (transcription, inhibition). But more often than not, elements actually work cooperatively or competitively to achieve a task. Or an element can act on the interaction between two others, as in the case of an enzyme controlling a reaction rate. We call “complex” these types of interaction and propose ways to identify them from time-series observations. Methodology: We use Granger Causality, a measure of the interaction between two signals, to characterize the influence of an enzyme on a reaction rate. We extend its traditional formulation to the case of multi-dimensional signals in order to capture group interactions, and not only element interactions. Our method is extensively tested on simulated data and applied to three biological datasets: microarray data of the Saccharomyces cerevisiae yeast, local field potential recordings of two brain areas and a metabolic reaction. Conclusions: Our results demonstrate that complex Granger causality can reveal new types of relation between signals and is particularly suited to biological data. Our approach raises some fundamental issues of the systems biology approach since finding all complex causalities (interactions) is an NP hard problem

    A Link to the Past: Using Markov Chain Monte Carlo Fitting to Constrain Fundamental Parameters of High-Redshift Galaxies

    Get PDF
    We have a developed a new method for fitting spectral energy distributions (SEDs) to identify and constrain the physical properties of high-redshift (4 < z < 8) galaxies. Our approach uses an implementation of Bayesian based Markov Chain Monte Carlo (PiMC^2) that allows us to compare observations to arbitrarily complex models and to compute 95% credible intervals that provide robust constraints for the model parameters. The work is presented in 2 sections. In the first, we test PiMC^2 using simulated SEDs to not only confirm the recovery of the known inputs but to assess the limitations of the method and identify potential hazards of SED fitting when applied specifically to high redshift (z>4) galaxies. Our tests reveal five critical results: 1) the ability to confidently constrain metallicity, population ages, and Av all require photometric accuracy better than what is currently achievable (i.e. less than a few percent); 2) the ability to confidently constrain stellar masses (within a factor of two) can be achieved without the need for high-precision photometry; 3) the addition of IRAC photometry does not guarantee that tighter constraints of the stellar masses and ages can be defined; 4) different assumptions about the star formation history can lead to significant biases in mass and age estimates; and 5) we are able to constrain stellar age and Av of objects that are both young and relatively dust free. In the second part of the paper we apply PiMC^2 to 17 4<z<8 objects, including the GRAPES Ly alpha sample (4<z<6), supplemented by HST/WFC3 near-IR observations, and several broad band selected z>6 galaxies. Using PiMC^2, we are able to constrain the stellar mass of these objects and in some cases their stellar age and find no evidence that any of these sources formed at a redshift much larger than z_f=8, a time when the Universe was ~ 0.6 Gyr old.Comment: Submitted to ApJ (Full abstract, 47 pages, 17 figures, 7 tables

    Modelling the evolution of distributions : an application to major league baseball

    Get PDF
    We develop Bayesian techniques for modelling the evolution of entire distributions over time and apply them to the distribution of team performance in Major League baseball for the period 1901-2000. Such models offer insight into many key issues (e.g. competitive balance) in a way that regression-based models cannot. The models involve discretizing the distribution and then modelling the evolution of the bins over time through transition probability matrices. We allow for these matrices to vary over time and across teams. We find that, with one exception, the transition probability matrices (and, hence, competitive balance) have been remarkably constant across time and over teams. The one exception is the Yankees, who have outperformed all other teams

    The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference

    Get PDF
    Background: Wiener-Granger causality (“G-causality”) is a statistical notion of causality applicable to time series data, whereby cause precedes, and helps predict, effect. It is defined in both time and frequency domains, and allows for the conditioning out of common causal influences. Originally developed in the context of econometric theory, it has since achieved broad application in the neurosciences and beyond. Prediction in the G-causality formalism is based on VAR (Vector AutoRegressive) modelling. New Method: The MVGC Matlab c Toolbox approach to G-causal inference is based on multiple equivalent representations of a VAR model by (i) regression parameters, (ii) the autocovariance sequence and (iii) the cross-power spectral density of the underlying process. It features a variety of algorithms for moving between these representations, enabling selection of the most suitable algorithms with regard to computational efficiency and numerical accuracy. Results: In this paper we explain the theoretical basis, computational strategy and application to empirical G-causal inference of the MVGC Toolbox. We also show via numerical simulations the advantages of our Toolbox over previous methods in terms of computational accuracy and statistical inference. Comparison with Existing Method(s): The standard method of computing G-causality involves estimation of parameters for both a full and a nested (reduced) VAR model. The MVGC approach, by contrast, avoids explicit estimation of the reduced model, thus eliminating a source of estimation error and improving statistical power, and in addition facilitates fast and accurate estimation of the computationally awkward case of conditional G-causality in the frequency domain. Conclusions: The MVGC Toolbox implements a flexible, powerful and efficient approach to G-causal inference. Keywords: Granger causality, vector autoregressive modelling, time series analysi

    Methods for Computing Marginal Data Densities from the Gibbs Output

    Full text link
    We introduce two new methods for estimating the Marginal Data Density (MDD) from the Gibbs output, which are based on exploiting the analytical tractability condition. Such a condition requires that some parameter blocks can be analytically integrated out from the conditional posterior densities. Our estimators are applicable to densely parameterized time series models such as VARs or DFMs. An empirical application to six-variate VAR models shows that the bias of a fully computational estimator is sufficiently large to distort the implied model rankings. One estimator is fast enough to make multiple computations of MDDs in densely parameterized models feasible

    Attention-dependent modulation of cortical taste circuits revealed by granger causality with signal-dependent noise

    Get PDF
    We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD) time series, with the variance of the noise increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive models with time invariant covariance structure, and thus do not take this signal-dependent noise into account. To address this limitation, here we describe a Granger causal model with signal-dependent noise, and a novel, likelihood ratio test for causal inferences. We apply this approach to the data from an fMRI study to investigate the source of the top-down attentional control of taste intensity and taste pleasantness processing. The Granger causality with signal-dependent noise analysis reveals effects not identified by classical Granger causal analysis. In particular, there is a top-down effect from the posterior lateral prefrontal cortex to the insular taste cortex during attention to intensity but not to pleasantness, and there is a top-down effect from the anterior and posterior lateral prefrontal cortex to the orbitofrontal cortex during attention to pleasantness but not to intensity. In addition, there is stronger forward effective connectivity from the insular taste cortex to the orbitofrontal cortex during attention to pleasantness than during attention to intensity. These findings indicate the importance of explicitly modeling signal-dependent noise in functional neuroimaging, and reveal some of the processes involved in a biased activation theory of selective attention
    corecore