231 research outputs found

    Coulomb Gas Representation of the SU(2) WZW Correlators at Higher Genera

    Full text link
    We express the correlation functions of the SU(2) WZW conformal field theory on Riemann surfaces of genus >1 by finite dimensional integrals.Comment: 9 pages, late

    Elliptic Wess-Zumino-Witten Model from Elliptic Chern-Simons Theory

    Get PDF
    This letter continues the program aimed at analysis of the scalar product of states in the Chern-Simons theory. It treats the elliptic case with group SU(2). The formal scalar product is expressed as a multiple finite dimensional integral which, if convergent for every state, provides the space of states with a Hilbert space structure. The convergence is checked for states with a single Wilson line where the integral expressions encode the Bethe-Ansatz solutions of the Lame equation. In relation to the Wess-Zumino-Witten conformal field theory, the scalar product renders unitary the Knizhnik-Zamolodchikov-Bernard connection and gives a pairing between conformal blocks used to obtain the genus one correlation functions.Comment: 18 pages, late

    KAM Theorem and Quantum Field Theory

    Full text link
    We give a new proof of the KAM theorem for analytic Hamiltonians. The proof is inspired by a quantum field theory formulation of the problem and is based on a renormalization group argument treating the small denominators inductively scale by scale. The crucial cancellations of resonances are shown to follow from the Ward identities expressing the translation invariance of the corresponding field theory.Comment: 32 page

    Nested T-duality

    Full text link
    We identify the obstructions for T-dualizing the boundary WZW model and make explicit how they depend on the geometry of branes. In particular, the obstructions disappear for certain brane configurations associated to non-regular elements of the Cartan torus. It is shown in this case that the boundary WZW model is "nested" in the twisted boundary WZW model as the dynamical subsystem of the latter.Comment: 13 page

    Gauging the Wess-Zumino term of a sigma model with boundary

    Full text link
    We investigate the gauging of the Wess-Zumino term of a sigma model with boundary. We derive a set of obstructions to gauging and we interpret them as the conditions for the Wess-Zumino term to extend to a closed form in a suitable equivariant relative de Rham complex. We illustrate this with the two-dimensional sigma model and we show that the new obstructions due to the boundary can be interpreted in terms of Courant algebroids. We specialise to the case of the Wess-Zumino-Witten model, where it is proved that there always exist suitable boundary conditions which allow gauging any subgroup which can be gauged in the absence of a boundary. We illustrate this with two natural classes of gaugings: (twisted) diagonal subgroups with boundary conditions given by (twisted) conjugacy classes, and chiral isotropic subgroups with boundary conditions given by cosets.Comment: 18 pages (minor changes in response to referee report

    Multifractal clustering of passive tracers on a surface flow

    Get PDF
    We study the anomalous scaling of the mass density measure of Lagrangian tracers in a compressible flow realized on the free surface on top of a three dimensional flow. The full two dimensional probability distribution of local stretching rates is measured. The intermittency exponents which quantify the fluctuations of the mass measure of tracers at small scales are calculated from the large deviation form of stretching rate fluctuations. The results indicate the existence of a critical exponent nc0.86n_c \simeq 0.86 above which exponents saturate, in agreement with what has been predicted by an analytically solvable model. Direct evaluation of the multi-fractal dimensions by reconstructing the coarse-grained particle density supports the results for low order moments.Comment: 7 pages, 4 figures, submitted to EP

    A family of solvable non-rational conformal field theories

    Full text link
    We find non-rational conformal field theories in two dimensions, which are solvable due to their correlators being related to correlators of Liouville theory. Their symmetry algebra consists of the dimension-two stress-energy tensor, and two dimension-one fields. The theories come in a family with two parameters: the central charge c and a complex number m. The special case m=0 corresponds to Liouville theory (plus two free bosons), and m=1 corresponds to the H3+ model. In the case m=2 we show that the correlators obey third-order differential equations, which are associated to a subsingular vector of the symmetry algebra.Comment: 14 pages, v2: role of subsingular vectors clarifie

    The Global Renormalization Group Trajectory in a Critical Supersymmetric Field Theory on the Lattice Z^3

    Full text link
    We consider an Euclidean supersymmetric field theory in Z3Z^3 given by a supersymmetric Φ4\Phi^4 perturbation of an underlying massless Gaussian measure on scalar bosonic and Grassmann fields with covariance the Green's function of a (stable) L\'evy random walk in Z3Z^3. The Green's function depends on the L\'evy-Khintchine parameter α=3+ϵ2\alpha={3+\epsilon\over 2} with 0<α<20<\alpha<2. For α=32\alpha ={3\over 2} the Φ4\Phi^{4} interaction is marginal. We prove for α32=ϵ2>0\alpha-{3\over 2}={\epsilon\over 2}>0 sufficiently small and initial parameters held in an appropriate domain the existence of a global renormalization group trajectory uniformly bounded on all renormalization group scales and therefore on lattices which become arbitrarily fine. At the same time we establish the existence of the critical (stable) manifold. The interactions are uniformly bounded away from zero on all scales and therefore we are constructing a non-Gaussian supersymmetric field theory on all scales. The interest of this theory comes from the easily established fact that the Green's function of a (weakly) self-avoiding L\'evy walk in Z3Z^3 is a second moment (two point correlation function) of the supersymmetric measure governing this model. The control of the renormalization group trajectory is a preparation for the study of the asymptotics of this Green's function. The rigorous control of the critical renormalization group trajectory is a preparation for the study of the critical exponents of the (weakly) self-avoiding L\'evy walk in Z3Z^3.Comment: 82 pages, Tex with macros supplied. Revision includes 1. redefinition of norms involving fermions to ensure uniqueness. 2. change in the definition of lattice blocks and lattice polymer activities. 3. Some proofs have been reworked. 4. New lemmas 5.4A, 5.14A, and new Theorem 6.6. 5.Typos corrected.This is the version to appear in Journal of Statistical Physic

    Running coupling expansion for the renormalized ϕ44\phi^4_4-trajectory from renormalization invariance

    Get PDF
    We formulate a renormalized running coupling expansion for the β\beta--function and the potential of the renormalized ϕ4\phi^4--trajectory on four dimensional Euclidean space-time. Renormalization invariance is used as a first principle. No reference is made to bare quantities. The expansion is proved to be finite to all orders of perturbation theory. The proof includes a large momentum bound on the connected free propagator amputated vertices.Comment: 14 pages LaTeX2e, typos and references correcte
    corecore