15 research outputs found

    Nanoparticle tension probes patterned at the nanoscale: impact of integrin clustering on force transmission

    No full text
    Herein we aimed to understand how nanoscale clustering of RGD ligands alters the mechano-regulation of their integrin receptors. We combined molecular tension fluorescence microscopy with block copolymer micelle nanolithography to fabricate substrates with arrays of precisely spaced probes that can generate a 10-fold fluorescence response to pN-forces. We found that the mechanism of sensing ligand spacing is force-mediated. This strategy is broadly applicable to investigating receptor clustering and its role in mechanotransduction pathways

    Analytical performance specifications based on biological variation data - considerations, strengths and limitations

    No full text
    Analytical performance specifications (APS) are typically established through one of three models: (i) outcome studies, (ii) biological variation (BV), or (iii) state-of-the-art. Presently, The APS can, for most measurands that have a stable concentration, be based on BV. BV based APS, defined for imprecision, bias, total allowable error and allowable measurement uncertainty, are applied to many different processes in the laboratory. When calculating APS, it is important to consider the different APS formulae, for what setting they are to be applied and if they are suitable for the intended purpose. In this opinion paper, we elucidate the background, limitations, strengths, and potential intended applications of the different BV based APS formulas. When using BV data to set APS, it is important to consider that all formulae are contingent on accurate and relevant BV estimates. During the last decade, efficient procedures have been established to obtain reliable BV estimates that are presented in the EFLM biological variation database. The database publishes detailed BV data for numerous measurands, global BV estimates derived from meta-analysis of quality-assured studies of similar study design and automatic calculation of BV based APS.</p

    Flower lose, a cell fitness marker, predicts COVID-19 prognosis

    No full text
    Risk stratification of COVID-19 patients is essential for pandemic management. Changes in the cell fitness marker, hFwe-Lose, can precede the host immune response to infection, potentially making such a biomarker an earlier triage tool. Here, we evaluate whether hFwe-Lose gene expression can outperform conventional methods in predicting outcomes (e.g., death and hospitalization) in COVID-19 patients. We performed a post-mortem examination of infected lung tissue in deceased COVID-19 patients to determine hFwe-Lose's biological role in acute lung injury. We then performed an observational study (n = 283) to evaluate whether hFwe-Lose expression (in nasopharyngeal samples) could accurately predict hospitalization or death in COVID-19 patients. In COVID-19 patients with acute lung injury, hFwe-Lose is highly expressed in the lower respiratory tract and is co-localized to areas of cell death. In patients presenting in the early phase of COVID-19 illness, hFwe-Lose expression accurately predicts subsequent hospitalization or death with positive predictive values of 87.8-100% and a negative predictive value of 64.1-93.2%. hFwe-Lose outperforms conventional inflammatory biomarkers and patient age and comorbidities, with an area under the receiver operating characteristic curve (AUROC) 0.93-0.97 in predicting hospitalization/death. Specifically, this is significantly higher than the prognostic value of combining biomarkers (serum ferritin, D-dimer, C-reactive protein, and neutrophil-lymphocyte ratio), patient age and comorbidities (AUROC of 0.67-0.92). The cell fitness marker, hFwe-Lose, accurately predicts outcomes in COVID-19 patients. This finding demonstrates how tissue fitness pathways dictate the response to infection and disease and their utility in managing the current COVID-19 pandemic

    Vitamin D and coronavirus disease 2019 (COVID-19): rapid evidence review

    No full text
    Background: The rapid global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), has re-ignited interest in the possible role of vitamin D in modulation of host responses to respiratory pathogens. Indeed, vitamin D supplementation has been proposed as a potential preventative or therapeutic strategy. Recommendations for any intervention, particularly in the context of a potentially fatal pandemic infection, should be strictly based on clinically informed appraisal of the evidence base. In this narrative review, we examine current evidence relating to vitamin D and COVID-19 and consider the most appropriate practical recommendations. Observations: Although there are a growing number of studies investigating the links between vitamin D and COVID-19, they are mostly small and observational with high risk of bias, residual confounding, and reverse causality. Extrapolation of molecular actions of 1,25(OH) 2-vitamin D to an effect of increased 25(OH)-vitamin D as a result of vitamin D supplementation is generally unfounded, as is the automatic conclusion of causal mechanisms from observational studies linking low 25(OH)-vitamin D to incident disease. Efficacy is ideally demonstrated in the context of adequately powered randomised intervention studies, although such approaches may not always be feasible. Conclusions: At present, evidence to support vitamin D supplementation for the prevention or treatment of COVID-19 is inconclusive. In the absence of any further compelling data, adherence to existing national guidance on vitamin D supplementation to prevent vitamin D deficiency, predicated principally on maintaining musculoskeletal health, appears appropriate. </p
    corecore