159 research outputs found

    Dipolar Relaxation in an ultra-cold Gas of magnetically trapped chromium atoms

    Full text link
    We have investigated both theoretically and experimentally dipolar relaxation in a gas of magnetically trapped chromium atoms. We have found that the large magnetic moment of 6 μB\mu_B results in an event rate coefficient for dipolar relaxation processes of up to 3.210113.2\cdot10^{-11} cm3^{3}s1^{-1} at a magnetic field of 44 G. We present a theoretical model based on pure dipolar coupling, which predicts dipolar relaxation rates in agreement with our experimental observations. This very general approach can be applied to a large variety of dipolar gases.Comment: 9 pages, 9 figure

    Spontaneous formation of persistent square pattern in a driven superfluid

    Full text link
    The emergence of patterns from simple physical laws belongs to the most striking topics in natural science. In particular, the spontaneous formation of structures from an initially homogeneous state can eventually lead to stable, non-homogeneous states of matter. Here we report on the spontaneous formation of square lattice patterns in a rotationally symmetric and driven Bose-Einstein condensate, confined in a two-dimensional box potential with absorptive boundaries. The drive is realized by globally modulating the two-particle interaction periodically in time. After a primary phase of randomly oriented stripes that emerge as a consequence of the Faraday instability, we observe the subsequent formation of persistent square lattice patterns in the highly occupied regime, where phonon-phonon interactions become relevant. We show theoretically that this state can be understood as an attractive fixed point of coupled nonlinear amplitude equations. Establishing the existence of this fixed point opens the perspective for engineering new, highly correlated states of matter in driven superfluids.Comment: 9 pages, 5 figure

    Condensate Heating by Atomic Losses

    Full text link
    Atomic Bose-Einstein condensate is heated by atomic losses. Predicted depletion ranges from 1% for a uniform 3D condensate to around 10% for a quasi-1D condensate in a harmonic trap.Comment: 4 pages in RevTex, 1 eps figur

    Square Pattern Formation as Stable Fixed Point in Driven Two-Dimensional Bose-Einstein Condensates

    Full text link
    We investigate pattern formation in two-dimensional Bose-Einstein condensates (BECs) caused by temporal periodic modulation of the interatomic interaction. Temporal modulation of the interaction causes the so-called Faraday instability in the condensate, which we show generically leads to a stable square grid density pattern. We take the amplitudes in each of the two directions spanning the two-dimensional density pattern as order parameters in pattern formation and derive a set of simultaneous time evolution equations for those order parameters from the Gross--Pitaevskii (GP) equation with a time-periodic interaction. We identify the fixed points of the time evolution and show by stability analysis that the inhomogeneous density exhibits a square grid pattern as a stable fixed point.Comment: 7 pages, 3 figures. Supplemental material: 9 page

    Enhancement and suppression of spontaneous emission and light scattering by quantum degeneracy

    Full text link
    Quantum degeneracy modifies light scattering and spontaneous emission. For fermions, Pauli blocking leads to a suppression of both processes. In contrast, in a weakly interacting Bose-Einstein condensate, we find spontaneous emission to be enhanced, while light scattering is suppressed. This difference is attributed to many-body effects and quantum interference in a Bose-Einstein condensate.Comment: 4 pages 1 figur

    Stability of rotating states in a weakly-interacting Bose-Einstein condensate

    Full text link
    We investigate the lowest state of a rotating, weakly-interacting Bose-Einstein condensate trapped in a harmonic confining potential that is driven by an infinitesimally asymmetric perturbation. Although in an axially-symmetric confining potential the gas has an axially-symmetric single-particle density distribution, we show that in the presence of the small asymmetric perturbation its lowest state is the one given by the mean-field approximation, which is a broken-symmetric state. We also estimate the rate of relaxation of angular momentum when the gas is no longer driven by the asymmetric perturbation and identify two regimes of "slow" and "fast" relaxation. States of certain symmetry are found to be more robust.Comment: 6 pages, RevTe

    Domain wall propagation in Permalloy nanowires with a thickness gradient

    Full text link
    The domain wall nucleation and motion processes in Permalloy nanowires with a thickness gradient along the nanowire axis have been studied. Nanowires with widths, w = 250 nm to 3 um and a base thickness of t = 10 nm were fabricated by electron-beam lithography. The magnetization hysteresis loops measured on individual nanowires are compared to corresponding nanowires without a thickness gradient. The Hc vs. t/w curves of wires with and without a thickness gradient are discussed and compared to micromagnetic simulations. We find a metastability regime at values of w, where a transformation from transverse to vortex domain wall type is expected

    Two-species mixture of quantum degenerate Bose and Fermi gases

    Full text link
    We have produced a macroscopic quantum system in which a Li-6 Fermi sea coexists with a large and stable Na-23 Bose-Einstein condensate. This was accomplished using inter-species sympathetic cooling of fermionic Li-6 in a thermal bath of bosonic Na-23
    corecore