30 research outputs found

    Small satellites with MEMS x-ray telescopes for x-ray astronomy and solar system exploration

    Get PDF
    Toward a new era of X-ray astronomy, next generation X-ray optics are indispensable. To meet a demand for telescopes lighter than the foil optics but with a better angular resolution less than 1 arcmin, we are developing micropore X-ray optics based on micromaching technologies. Using sidewalls of micropores through a thin silicon wafer, this type can be the lightest X-ray telescope ever achieved. Two new Japanese missions ORBIS and GEOX will carry this optics. ORBIS is a small X-ray astronomy mission to monitor supermassive blackholes, while GEO-X is a small exploration mission of the Earth's magnetosphere. Both missions need a ultra light-weight (<1 kg) telescope with moderately good angular resolution (<10 arcmin) at an extremely short focal length (<30 cm). We plan to demonstrate this optics in these two missions around 2020, aiming at future other astronomy and exploration missions

    Photoinduced Structural Phase Transitions in Polyacene

    Full text link
    There exist two types of structural instability in polyacene: double bonds in a cis pattern and those in a trans pattern. They are isoenergetic but spectroscopically distinct. We demonstrate optical characterization and manipulation of Peierls-distorted polyacene employing both correlated and uncorrelated Hamiltonians. We clarify the phase boundaries of the cis- and trans-distorted isomers, elucidate their optical-conductivity spectra, and then explore their photoresponses. There occurs a photoinduced transformation in the polyacene structure, but it is one-way switching: The trans configuration is well convertible into the cis one, whereas the reverse conversion is much less feasible. Even the weakest light irradiation can cause a transition of uncorrelated electrons, while correlated electrons have a transition threshold against light irradiation.Comment: 14 pages with 15 figures embedde

    Hemispace asymmetries and laterality effects in arm positioning

    No full text
    Hemispace asymmetries and laterality effects were examined on an arm positioning reproduction task. Sixteen male subjects were asked to reproduce both abductive and adductive positioning movements with the left or right arm within either the left or the right hemispace. Hemispace was manipulated using a 90 degrees head-rotation paradigm. A left hemispace advantage in positioning accuracy was predicted for both left and right arm movements on the grounds that the perceptual-motor control of positioning movements made in left hemispace is primarily mediated by the right hemisphere which is known to be advantageous for tasks which are spatial in nature (Heilman, Bowers, & Watson, 1984). No arm laterality effects were predicted to occur because the proximal musculature involved in the control of arm movements is innervated from both contralateral and ipsilateral cerebral hemispheres (Brinkman & Kuypers, 1973). Results showed that the predicted left hemispace advantage was evident for the right arm on the positioning variability measure alone, whereas it was absent for all other possible conditions on all error measures. Laterality (arm) effects were absent as predicted. The experiment also demonstrated a greater degradation of reproduction performance under the ′crossed" arm-hemispace conditions than under the ′uncrossed" conditions. A plausible explanation for the uncrossed advantage for the task is that under normal conditions, a single hemisphere is primarily responsible for both controlling the contralateral arm and directing attention to the contralateral hemispace, and consequently potential interhemispheric interference is minimized. A clear response bias effect in movement reproduction was also evident as a function of the direction of concurrent arm movement and head rotation. Arm movements made in the same direction as head rotation were systematically undershot in reproduction to a much greater degree than arm movements made in the opposite direction to head rotation

    Patterns of muscle activation in human hopping

    No full text
    The original publication can be found at www.springerlink.comIn the present study, we examined the electromyogram (EMG) patterns of the soleus and medial gastrocnemius (MG) muscles during rhythmical, two-legged hopping to investigate the contributions of the monosynaptic short- and long-latency stretch reflexes during such a natural movement in human. During rhythmical hopping, soleus muscle is activated reflexly at near-monosynaptic latency by stretch resulting from passive ankle flexion upon landing. Soleus muscle also contracts voluntarily in order to launch the body into the next hop. This is part of the rhythmical bursts of activity producing the hops. Depending on the hopping interval, this phase of activation can follow the short-latency phase or precede landing at very short hopping intervals. In MG, there is an initial phase of activity that stiffens the muscle in preparation for landing, and continues through the contact phase. The monosynaptic reflex response to landing is usually superimposed on this activity. Depending on the hopping interval, both of these responses may be overlaid with activity that is time-locked to the take-off into the next hop, and serves to launch the body into the next hop. However, no evidence for a long-latency stretch reflex was found. In addition, the preferred hopping frequency for all subjects was about 2 Hz. This frequency is associated with a pattern of EMG activity the timing of which indicates that it balances the requirement for a comfortable landing from a hop with the optimal muscle activation required for launching the following hop.K. Funase, T. Higashi, A. Sakakibara, K. Imanaka, Y. Nishihira, T.S. Mile

    Research of Saccade-Related EEG: Comparison of Ensemble Averaging Method and Independent Component Analysis

    No full text
    Electroencephalogram (EEG) related to fast eye movement (saccade), has been the subject of application oriented research by our group toward developing a brain-computer interface(BCI). Our goal is to develop novel BCI based on eye movements system employing EEG signals on-line. Most of the analysis of the saccade-related EEG data has been performed using ensemble averaging approaches. However, ensemble averaging is not suitable for BCI
    corecore