3,877 research outputs found

    Gauss-Bonnet type identity in Weyl-Cartan space

    Get PDF
    The Gauss-Bonnet type identity is derived in a Weyl-Cartan space on the basis of the variational method.Comment: 5 page

    Is It Really Naked? On Cosmic Censorship in String Theory

    Full text link
    We investigate the possibility of cosmic censorship violation in string theory using a characteristic double-null code, which penetrates horizons and is capable of resolving the spacetime all the way to the singularity. We perform high-resolution numerical simulations of the evolution of negative mass initial scalar field profiles, which were argued to provide a counterexample to cosmic censorship conjecture for AdS-asymptotic spacetimes in five-dimensional supergravity. In no instances formation of naked singularity is seen. Instead, numerical evidence indicates that black holes form in the collapse. Our results are consistent with earlier numerical studies, and explicitly show where the `no black hole' argument breaks.Comment: 8 pages, 5 figures, 1 table; REVTeX 4.

    The geometry of a naked singularity created by standing waves near a Schwarzschild horizon, and its application to the binary black hole problem

    Get PDF
    The most promising way to compute the gravitational waves emitted by binary black holes (BBHs) in their last dozen orbits, where post-Newtonian techniques fail, is a quasistationary approximation introduced by Detweiler and being pursued by Price and others. In this approximation the outgoing gravitational waves at infinity and downgoing gravitational waves at the holes' horizons are replaced by standing waves so as to guarantee that the spacetime has a helical Killing vector field. Because the horizon generators will not, in general, be tidally locked to the holes' orbital motion, the standing waves will destroy the horizons, converting the black holes into naked singularities that resemble black holes down to near the horizon radius. This paper uses a spherically symmetric, scalar-field model problem to explore in detail the following BBH issues: (i) The destruction of a horizon by the standing waves. (ii) The accuracy with which the resulting naked singularity resembles a black hole. (iii) The conversion of the standing-wave spacetime (with a destroyed horizon) into a spacetime with downgoing waves by the addition of a ``radiation-reaction field''. (iv) The accuracy with which the resulting downgoing waves agree with the downgoing waves of a true black-hole spacetime (with horizon). The model problem used to study these issues consists of a Schwarzschild black hole endowed with spherical standing waves of a scalar field. It is found that the spacetime metric of the singular, standing-wave spacetime, and its radiation-reaction-field-constructed downgoing waves are quite close to those for a Schwarzschild black hole with downgoing waves -- sufficiently close to make the BBH quasistationary approximation look promising for non-tidally-locked black holes.Comment: 12 pages, 6 figure

    Analytic Evaluation of Four-Particle Integrals with Complex Parameters

    Full text link
    The method for analytic evaluation of four-particle integrals, proposed by Fromm and Hill, is generalized to include complex exponential parameters. An original procedure of numerical branch tracking for multiple valued functions is developed. It allows high precision variational solution of the Coulomb four-body problem in a basis of exponential-trigonometric functions of interparticle separations. Numerical results demonstrate high efficiency and versatility of the new method.Comment: 13 pages, 4 figure

    Quasinormal Modes of Charged Scalars around Dilaton Black Holes in 2+1 Dimensions: Exact Frequencies

    Full text link
    We have studied the charged scalar perturbation around a dilaton black hole in 2 +1 dimensions. The wave equations of a massless charged scalar field is shown to be exactly solvable in terms of hypergeometric functions. The quasinormal frequencies are computed exactly. The relation between the quasinormal frequencies and the charge of the black hole, charge of the scalar and the temperature of the black hole are analyzed. The asymptotic form of the real part of the quasinormal frequencies are evaluated exactly.Comment: 20 pages and 7 figures, some references are added and some removed. There are some changes to the text. arXiv admin note: text overlap with arXiv:hep-th/040716

    Supersymmetry of Tensionless Rotating Strings in AdS_5 x S^5, and Nearly-BPS Operators

    Full text link
    It is shown that a class of rotating strings in AdS_5 x S^5 with SO(6) angular momenta (J,J',J') preserve 1/8-supersymmetry for large J,J', in which limit they are effectively tensionless; when J=0, supersymmetry is enhanced to 1/4. These results imply that recent checks of the AdS/CFT correspondence actually test a nearly-BPS sector.Comment: 12 pages, no figures; v2: new section on CFT operators and new references added, discussion section and acknowledgements modified, abstract rephrashe

    A note on spin chain/string duality

    Full text link
    Recently a significant progress in matching the anomalous dimensions of certain class of operators in N=4 SYM theory and rotating strings was made. The correspondence was established mainly using Bethe ansatz technique applied to the spin s Heisenberg model. In a recent paper Kruczenski (hep-th/0311203) suggested to solve the Heisenberg model by using of sigme model approach. In this paper we generalize the solutions obtained by Kruczenski and comment on the dual string theory. It turns out that our solutions are related to the so called Neumann-Rosochatius integrable system. We comment on the spin chain solutions and on the string/gauge theory correspondence.Comment: v.2 One reference added, typos corrected, 21 page
    corecore