737 research outputs found

    On-chip quantum interference between silicon photon-pair sources

    Get PDF
    Large-scale integrated quantum photonic technologies1, 2 will require on-chip integration of identical photon sources with reconfigurable waveguide circuits. Relatively complex quantum circuits have been demonstrated already1, 2, 3, 4, 5, 6, 7, but few studies acknowledge the pressing need to integrate photon sources and waveguide circuits together on-chip8, 9. A key step towards such large-scale quantum technologies is the integration of just two individual photon sources within a waveguide circuit, and the demonstration of high-visibility quantum interference between them. Here, we report a silicon-on-insulator device that combines two four-wave mixing sources in an interferometer with a reconfigurable phase shifter. We configured the device to create and manipulate two-colour (non-degenerate) or same-colour (degenerate) path-entangled or path-unentangled photon pairs. We observed up to 100.0 ± 0.4% visibility quantum interference on-chip, and up to 95 ± 4% off-chip. Our device removes the need for external photon sources, provides a path to increasing the complexity of quantum photonic circuits and is a first step towards fully integrated quantum technologies

    Full Quantum Analysis of Two-Photon Absorption Using Two-Photon Wavefunction: Comparison with One-Photon Absorption

    Full text link
    For dissipation-free photon-photon interaction at the single photon level, we analyze one-photon transition and two-photon transition induced by photon pairs in three-level atoms using two-photon wavefunctions. We show that the two-photon absorption can be substantially enhanced by adjusting the time correlation of photon pairs. We study two typical cases: Gaussian wavefunction and rectangular wavefunction. In the latter, we find that under special conditions one-photon transition is completely suppressed while the high probability of two-photon transition is maintained.Comment: 6 pages, 4 figure

    Probing the Shape of Quantum Dots with Magnetic Fields

    Full text link
    A tool for the identification of the shape of quantum dots is developed. By preparing a two-electron quantum dot, the response of the low-lying excited states to a homogeneous magnetic field, i.e. their spin and parity oscillations, is studied for a large variety of dot shapes. For any geometric configuration of the confinement we encounter characteristic spin singlet - triplet crossovers. The magnetization is shown to be a complementary tool for probing the shape of the dot.Comment: 11 pages, 4 figure

    New method to simulate quantum interference using deterministic processes and application to event-based simulation of quantum computation

    Full text link
    We demonstrate that networks of locally connected processing units with a primitive learning capability exhibit behavior that is usually only attributed to quantum systems. We describe networks that simulate single-photon beam-splitter and Mach-Zehnder interferometer experiments on a causal, event-by-event basis and demonstrate that the simulation results are in excellent agreement with quantum theory. We also show that this approach can be generalized to simulate universal quantum computers.Comment: J. Phys. Soc. Jpn. (in press) http://www.compphys.net/dl

    Excitonic Strings in one dimensional organic compounds

    Full text link
    Important questions concern the existence of excitonic strings in organic compounds and their signatures in the photophysics of these systems. A model in terms of Hard Core Bosons is proposed to study this problem in one dimension. Mainly the cases with two and three particles are studied for finite and infinite lattices, where analytical results are accessible. It is shown that if bi-excitonic states exist, three-excitonic and even, n-excitonic strings, at least in a certain range of parameters, will exist. Moreover, the behaviour of the transitions from one exciton to the biexciton is fully clarified. The results are in agreement with exact finite cluster diagonalizations of several model Hamiltonians.Comment: 36 pages, 4 eps figs. to appear in Phys. Rev.
    corecore