1,451 research outputs found
Risk of radiogenic second cancers following volumetric modulated arc therapy and proton arc therapy for prostate cancer
Prostate cancer patients who undergo radiotherapy are at an increased risk to develop a radiogenic second cancer. Proton therapy has been shown to reduce the predicted risk of second cancer when compared to intensity modulated radiotherapy. However, it is unknown if this is also true for the rotational therapies proton arc therapy and volumetric modulated arc therapy (VMAT). The objective of this study was to compare the predicted risk of cancer following proton arc therapy and VMAT for prostate cancer. Proton arc therapy and VMAT plans were created for three patients. Various risk models were combined with the dosimetric data (therapeutic and stray dose) to predict the excess relative risk (ERR) of cancer in the bladder and rectum. Ratios of ERR values (RRR) from proton arc therapy and VMAT were calculated. RRR values ranged from 0.74 to 0.99, and all RRR values were shown to be statistically less than 1, except for the value calculated with the linear-non-threshold risk model. We conclude that the predicted risk of cancer in the bladder or rectum following proton arc therapy for prostate cancer is either less than or approximately equal to the risk following VMAT, depending on which risk model is applied. © 2012 Institute of Physics and Engineering in Medicine
Absolute properties of BG Ind - a bright F3 system just leaving the Main Sequence
We present photometric and spectroscopic analysis of the bright detached
eclipsing binary BG Ind. The masses of the components are found to be 1.428 +-
0.008 and 1.293 +- 0.008 Msun and the radii to be 2.290+-0.017 and 1.680+-0.038
Rsun for primary and secondary stars, respectively. Spectra- and
isochrone-fitting coupled with color indices calibration yield
[Fe/H]=-0.2+-0.1. At an age of 2.65+-0.20 Gyr BG Ind is well advanced in the
main-sequence evolutionary phase - in fact, its primary is at TAMS or just
beyond it. Together with three similar systems (BK Peg, BW Aqr and GX Gem) it
offers an interesting opportunity to test the theoretical description of
overshooting in the critical mass range 1.2-1.5 Msun.Comment: 8 pages, 5 figures, corrected bugs in author lis
Orbital and physical parameters of eclipsing binaries from the ASAS catalogue -- I. A sample of systems with components' masses between 1 and 2 M
We derive the absolute physical and orbital parameters for a sample of 18
detached eclipsing binaries from the \emph{All Sky Automated Survey} (ASAS)
database based on the available photometry and our own radial velocity
measurements. The radial velocities (RVs) are computed using spectra we
collected with the 3.9-m Anglo-Australian Telescope and its \emph{University
College London Echelle Spectrograph} and the 1.9-m SAAO Radcliffe telescope and
its \emph{Grating Instrument for Radiation Analysis with a Fibre Fed Echelle}.
In order to obtain as precise RVs as possible, most of the systems were
observed with an iodine cell available at the AAT/UCLES and/or analyzed using
the two-dimensional cross-correlation technique (TODCOR). The RVs were measured
with TODCOR using synthetic template spectra as references. However, for two
objects we used our own approach to the tomographic disentangling of the binary
spectra to provide observed template spectra for the RV measurements and to
improve the RV precision even more. For one of these binaries, AI Phe, we were
able to the obtain an orbital solution with an RV of 62 and 24 m s
for the primary and secondary respectively. For this system, the precision in
is 0.08%. For the analysis, we used the photometry available in
the ASAS database. We combined the RV and light curves using PHOEBE and JKTEBOP
codes to obtain the absolute physical parameters of the systems. Having precise
RVs we were able to reach 0.2 % precision (or better) in masses in
several cases but in radii, due to the limited precision of the ASAS
photometry, we were able to reach a precision of only 1% in one case and 3-5 %
in a few more cases. For the majority of our objects, the orbital and physical
analysis is presented for the first time.Comment: 16 pages, 2 figures, 6 tables in the main text, 1 table in appendix,
to appear in MNRA
Workshop to identify critical windows of exposure for children's health: immune and respiratory systems work group summary.
Fetuses, infants, and juveniles (preadults) should not be considered simply "small adults" when it comes to toxicological risk. We present specific examples of developmental toxicants that are more toxic to children than to adults, focusing on effects on the immune and respiratory systems. We describe differences in both the pharmacokinetics of the developing immune and respiratory systems as well as changes in target organ sensitivities to toxicants. Differential windows of vulnerability during development are identified in the context of available animal models. We provide specific approaches to directly investigate differential windows of vulnerability. These approaches are based on fundamental developmental biology and the existence of discrete developmental processes within the immune and respiratory systems. The processes are likely to influence differential developmental susceptibility to toxicants, resulting in lifelong toxicological changes. We also provide a template for comparative research. Finally, we discuss the application of these data to risk assessment
Di-(2-ethylhexyl) Phthalate Enhances Atopic Dermatitis-Like Skin Lesions in Mice
Di-(2-ethylhexyl) phthalate (DEHP) has been widely used in polyvinyl chloride products and has become ubiquitous in the developed countries. DEHP reportedly displays an adjuvant effect on immunoglobulin production. However, it has not been elucidated whether DEHP is associated with the aggravation of atopic dermatitis. We investigated the effects of DEHP on atopic dermatitis-like skin lesions induced by mite allergen in NC/Nga mice. NC/Nga male mice were injected intradermally with mite allergen on their right ears. In the presence of allergen, DEHP (0, 0.8, 4, 20, or 100 μg) was administered by intraperitoneal injection. We evaluated clinical scores, ear thickening, histologic findings, and the protein expression of chemokines. Exposure to DEHP at a dose of 0.8–20 μg caused deterioration of atopic dermatitis-like skin lesions related to mite allergen; this was evident from macroscopic and microscopic examinations. Furthermore, these changes were consistent with the protein expression of proinflammatory molecules such as macrophage inflammatory protein-1α (MIP-1α) and eotaxin in the ear tissue in overall trend. In contrast, 100 μg DEHP did not show the enhancing effects. These results indicate that DEHP enhances atopic dermatitis-like skin lesions at hundred-fold lower levels than the no observed adverse effect level determined on histologic changes in the liver of rodents. DEHP could be at least partly responsible for the recent increase in atopic dermatitis
Orbital and physical parameters of eclipsing binaries from the ASAS catalogue - IV. A 0.61 + 0.45 M_sun binary in a multiple system
We present the orbital and physical parameters of a newly discovered low-mass
detached eclipsing binary from the All-Sky Automated Survey (ASAS) database:
ASAS J011328-3821.1 A - a member of a visual binary system with the secondary
component separated by about 1.4 seconds of arc. The radial velocities were
calculated from the high-resolution spectra obtained with the 1.9-m
Radcliffe/GIRAFFE, 3.9-m AAT/UCLES and 3.0-m Shane/HamSpec
telescopes/spectrographs on the basis of the TODCOR technique and positions of
H_alpha emission lines. For the analysis we used V and I band photometry
obtained with the 1.0-m Elizabeth and robotic 0.41-m PROMPT telescopes,
supplemented with the publicly available ASAS light curve of the system.
We found that ASAS J011328-3821.1 A is composed of two late-type dwarfs
having masses of M_1 = 0.612 +/- 0.030 M_sun, M_2 = 0.445 +/- 0.019 M_sun and
radii of R_1 = 0.596 +/- 0.020 R_sun, R_2 = 0.445 +/- 0.024 R_sun, both show a
substantial level of activity, which manifests in strong H_alpha and H_beta
emission and the presence of cool spots. The influence of the third light on
the eclipsing pair properties was also evaluated and the photometric properties
of the component B were derived. Comparison with several popular stellar
evolution models shows that the system is on its main sequence evolution stage
and probably is more metal rich than the Sun. We also found several clues which
suggest that the component B itself is a binary composed of two nearly
identical ~0.5 M_sun stars.Comment: 12 pages, 7 figures, 7 tables, to appear in MNRA
GJ 3236: a new bright, very low-mass eclipsing binary system discovered by the MEarth observatory
We report the detection of eclipses in GJ 3236, a bright (I = 11.6) very low
mass binary system with an orbital period of 0.77 days. Analysis of light- and
radial velocity curves of the system yielded component masses of 0.38 +/- 0.02
and 0.28 +/- 0.02 Msol. The central values for the stellar radii are larger
than the theoretical models predict for these masses, in agreement with the
results for existing eclipsing binaries, although the present 5% observational
uncertainties limit the significance of the larger radii to approximately 1
sigma. Degeneracies in the light curve models resulting from the unknown
configuration of surface spots on the components of GJ 3236 currently dominate
the uncertainties in the radii, and could be reduced by obtaining precise,
multi-band photometry covering the full orbital period. The system appears to
be tidally synchronized and shows signs of high activity levels as expected for
such a short orbital period, evidenced by strong Halpha emission lines in the
spectra of both components. These observations probe an important region of
mass-radius parameter space around the predicted transition to fully-convective
stellar interiors, where there are a limited number of precise measurements
available in the literature.Comment: 14 pages, 5 figures, 10 tables, emulateapj format. Accepted for
publication in Ap
Search for Gravitational-wave Inspiral Signals Associated with Short Gamma-ray Bursts During LIGO's Fifth and Virgo's First Science Run
Progenitor scenarios for short gamma-ray bursts (short GRBs) include coalescenses of two neutron stars or a neutron star and black hole, which would necessarily be accompanied by the emission of strong gravitational waves. We present a search for these known gravitational-wave signatures in temporal and directional coincidence with 22 GRBs that had sufficient gravitational-wave data available in multiple instruments during LIGO's fifth science run, S5, and Virgo's first science run, VSR1. We find no statistically significant gravitational-wave candidates within a [ – 5, + 1) s window around the trigger time of any GRB. Using the Wilcoxon-Mann-Whitney U-test, we find no evidence for an excess of weak gravitational-wave signals in our sample of GRBs. We exclude neutron star-black hole progenitors to a median 90% confidence exclusion distance of 6.7 Mpc
- …