1,217 research outputs found

    Electroweak Constraints from Atomic Parity Violation and Neutrino Scattering

    Full text link
    Precision electroweak physics can provide fertile ground for uncovering new physics beyond the Standard Model (SM). One area in which new physics can appear is in so-called "oblique corrections", i.e., next-to-leading order expansions of bosonic propagators corresponding to vacuum polarization. One may parametrize their effects in terms of quantities SS and TT that discriminate between conservation and non-conservation of isospin. This provides a means of comparing the relative contributions of precision electroweak experiments to constraints on new physics. Given the prevalence of strongly TT-sensitive experiments, there is an acute need for further constraints on SS, such as provided by atomic parity-violating experiments on heavy atoms. We evaluate constraints on SS arising from recently improved calculations in the Cs atom. We show that the top quark mass mtm_t provides stringent constraints on SS within the context of the Standard Model. We also consider the potential contributions of next-generation neutrino scattering experiments to improved (S,T)(S,T) constraints.Comment: 10 pages, 4 figures, final corrected version to be published in Physical Review

    Tachyon Vacuum in Cubic Superstring Field Theory

    Full text link
    In this paper we give an exact analytic solution for tachyon condensation in the modified (picture 0) cubic superstring field theory. We prove the absence of cohomology and, crucially, reproduce the correct value for the D-brane tension. The solution is surprising for two reasons: First, the existence of a tachyon vacuum in this theory has not been definitively established in the level expansion. Second, the solution {\it vanishes} in the GSO()(-) sector, implying a ``tachyon vacuum'' solution exists even for a {\it BPS} D-brane.Comment: 16 pages, 2 figure

    The Prediction of Mass of Z'-Boson from bq0bq0barb_q^0-b_q^0 bar Mixing

    Full text link
    B_q^0-B_^0 bar mixing offers a profound probe into the effects of new physics beyond the Standard Model. In this paper, Bs0Bs0barB_s^0-B_s^0 bar and Bd0Bd0barB_d^0-B_d^0 bar mass differences are considered taking the effect of both Z-and Z' -mediated flavour-changing neutral currents in the Bq0Bq0barB_q^0-B_q^0 bar mixing (q = d, s). Our estimated mass of Z' boson is accessible at the experiments LHC and B-factories in near future.Comment: 11 pages, 02 Figure

    Recent Developments in Precision Electroweak Physics

    Get PDF
    Developments in precision electroweak physics in the two years since the symposium are briefly summarized.Comment: Update on recent developments, prepared for the publication of the Proceedings of Alberto Sirlin Symposium, New York University, October 2000. 10 pages, 1 figur

    The Fourth SM Family Neutrino at Future Linear Colliders

    Full text link
    It is known that Flavor Democracy favors the existence of the fourth standard model (SM) family. In order to give nonzero masses for the first three family fermions Flavor Democracy has to be slightly broken. A parametrization for democracy breaking, which gives the correct values for fundamental fermion masses and, at the same time, predicts quark and lepton CKM matrices in a good agreement with the experimental data, is proposed. The pair productions of the fourth SM family Dirac (ν4)(\nu_{4}) and Majorana (N1)(N_{1}) neutrinos at future linear colliders with s=500\sqrt{s}=500 GeV, 1 TeV and 3 TeV are considered. The cross section for the process e+eν4ν4ˉ(N1N1)e^{+}e^{-}\to\nu_{4}\bar {\nu_{4}}(N_{1}N_{1}) and the branching ratios for possible decay modes of the both neutrinos are determined. The decays of the fourth family neutrinos into muon channels (ν4(N1)μ±W)(\nu_{4}(N_{1})\to\mu^{\pm}W^{\mp}) provide cleanest signature at e+ee^{+}e^{-} colliders. Meanwhile, in our parametrization this channel is dominant. WW bosons produced in decays of the fourth family neutrinos will be seen in detector as either di-jets or isolated leptons. As an example we consider the production of 200 GeV mass fourth family neutrinos at s=500\sqrt{s}=500 GeV linear colliders by taking into account di-muon plus four-jet events as signatures.Comment: 16 pages, 3 figures, 10 table

    Relevant Deformations in Open String Field Theory: a Simple Solution for Lumps

    Get PDF
    We propose a remarkably simple solution of cubic open string field theory which describes inhomogeneous tachyon condensation. The solution is in one-to-one correspondence with the IR fixed point of the RG-flow generated in the two--dimensional world-sheet theory by integrating a relevant operator with mild enough OPE on the boundary. It is shown how the closed string overlap correctly captures the shift in the closed string one point function between the UV and the IR limits of the flow. Examples of lumps in non-compact and compact transverse directions are given.Comment: 45 pages. v2: typos and minor improvements. v3: submitted to jhe

    Probing Z' gauge boson with the spin configuration of top quark pair production at future ee+e^- e^+ linear colliders

    Get PDF
    We explore the effects of extra neutral gauge boson involved in the supersymmetric E6 model on the spin configuration of the top quark pair produced at the polarized e- e+ collider. Generic mixing terms are considered including kinetic mixing terms as well as mass mixing. In the off-diagonal spin basis of the standard model, we show that the cross sections for the suppressed spin configurations can be enhanced with the effects of the Z' boson through the modification of the spin configuration of produced top quark pair enough to be measured in the Linear Colliders, which provides the way to observe the effects of Z' boson and discriminate the pattern of gauge group decomposition. It is pointed out that the kinetic mixing may dilute the effects of mass mixing terms, and we have to perform the combined analysis.Comment: 19 pages including 5 figures, ReVTe

    The energy of the analytic lump solution in SFT

    Get PDF
    In a previous paper a method was proposed to find exact analytic solutions of open string field theory describing lower dimensional lumps, by incorporating in string field theory an exact renormalization group flow generated by a relevant operator in a worldsheet CFT. In this paper we compute the energy of one such solution, which is expected to represent a D24 brane. We show, both numerically and analytically, that its value corresponds to the theoretically expected one.Comment: 45 pages, former section 2 suppressed, Appendix D added, comments and references added, typos corrected. Erratum adde

    Indications for an Extra Neutral Gauge Boson in Electroweak Precision Data

    Get PDF
    A new analysis of the hadronic peak cross section at LEP 1 implies a small amount of missing invisible width in Z decays, while the effective weak charge in atomic parity violation has been determined recently to 0.6% accuracy, indicating a significantly negative S parameter. As a consequence of these two deviations, the data are described well if the presence of an additional Z' boson, such as predicted in Grand Unified Theories, is assumed. Moreover, the data are now rich enough to study an arbitrary extra Z' boson and to determine its couplings in a model independent way. An excellent best fit to the data is obtained in this case, suggesting the possibility of a family non-universal Z' with properties similar to ones predicted in a class of superstring theories.Comment: 5 pages of ReVTeX, 2 figure

    Ghost story. III. Back to ghost number zero

    Full text link
    After having defined a 3-strings midpoint-inserted vertex for the bc system, we analyze the relation between gh=0 states (wedge states) and gh=3 midpoint duals. We find explicit and regular relations connecting the two objects. In the case of wedge states this allows us to write down a spectral decomposition for the gh=0 Neumann matrices, despite the fact that they are not commuting with the matrix representation of K1. We thus trace back the origin of this noncommutativity to be a consequence of the imaginary poles of the wedge eigenvalues in the complex k-plane. With explicit reconstruction formulas at hand for both gh=0 and gh=3, we can finally show how the midpoint vertex avoids this intrinsic noncommutativity at gh=0, making everything as simple as the zero momentum matter sector.Comment: 40 pages. v2: typos and minor corrections, presentation improved in sect. 4.3, plots added in app. A.1, two refs added. To appear in JHE
    corecore