17 research outputs found

    Pattern Clustering using Cooperative Game Theory

    Full text link
    In this paper, we approach the classical problem of clustering using solution concepts from cooperative game theory such as Nucleolus and Shapley value. We formulate the problem of clustering as a characteristic form game and develop a novel algorithm DRAC (Density-Restricted Agglomerative Clustering) for clustering. With extensive experimentation on standard data sets, we compare the performance of DRAC with that of well known algorithms. We show an interesting result that four prominent solution concepts, Nucleolus, Shapley value, Gately point and \tau-value coincide for the defined characteristic form game. This vindicates the choice of the characteristic function of the clustering game and also provides strong intuitive foundation for our approach.Comment: 6 pages, 6 figures, published in Proceedings of Centenary Conference - Department of Electrical Engineering, Indian Institute of Science : 653-658, 201

    The ontogeny of antipredator behavior: age differences in California ground squirrels (Otospermophilus beecheyi) at multiple stages of rattlesnake encounters

    Full text link
    Newborn offspring of animals often exhibit fully functional innate antipredator behaviors, but they may also require learning or further development to acquire appropriate responses. Experience allows offspring to modify responses to specific threats and also leaves them vulnerable during the learning period. However, antipredator behaviors used at one stage of a predator encounter may compensate for deficiencies at another stage, a phenomenon that may reduce the overall risk of young that are vulnerable at one or more stages. Few studies have examined age differences in the effectiveness of antipredator behaviors across multiple stages of a predator encounter. In this study, we examined age differences in the antipredator behaviors of California ground squirrels (Otospermophilus beecheyi) during the detection, interaction, and attack stages of Pacific rattlesnake (Crotalus oreganus) encounters. Using free-ranging squirrels, we examined the ability to detect free-ranging rattlesnakes, snake-directed behaviors after discovery of a snake, and responses to simulated rattlesnake strikes. We found that age was the most important factor in snake detection, with adults being more likely to detect snakes than pups. We also found that adults performed more tail flagging (a predator-deterrent signal) toward snakes and were more likely to investigate a snake’s refuge when interacting with a hidden snake. In field experiments simulating snake strikes, adults exhibited faster reaction times than pups. Our results show that snake detection improves with age and that pups probably avoid rattlesnakes and minimize time spent in close proximity to them to compensate for their reduced reaction times to strikes

    Are recent changes in the terrestrial small mammal communities related to land use change? A test using pellet analyses

    No full text
    © 2015, The Ecological Society of Japan. Human-induced landscape changes are expected to have strong effects on the composition and structure of terrestrial small mammal communities (Orders Rodentia and Soricomorpha). However, testing such expectations is difficult due to low detectability of these animals. We used analyses of barn owl (Tyto alba) pellets sampled in the same roosting places during 1977–1991 and again in 2011–2014 to (a) document small mammal community changes and (b) relate them to changes in land use. Forest and synanthropic small mammals increased by a 7 % between both periods, whereas open-land species decreased by 13 %. Man-made loss (crops and meadows) and expansion (forest and urban) of relevant habitat types were closely related to these changes. Localities with land use changes opposite to the general trend showed also an opposite trend in small mammal community change. Land use heterogeneity increased and dominance decreased between both sampling periods, and this pattern was paralleled by an increasing trend in diversity and a decreasing trend in dominance in small mammal communities. Decreasing trends of some generalist northern species with restricted ranges may have been due to climate change. Diet monitoring of barn owls are thus valuable tools for both documenting and analyzing fine-grained small mammal responses to global change.Peer Reviewe
    corecore