10 research outputs found
Second premolar agenesis is associated with mandibular form : a geometric morphometric analysis of mandibular cross-sections
The aim of this study was to compare mandibular form (i.e., size and shape) between patients with agenesis of the lower second premolar (P2) and a control group with no agenesis. Three hypotheses were tested: (H1) agenesis causes a change in mandibular morphology because of inadequate alveolar ridge development in the area of the missing tooth (mandibular plasticity); (H2) agenesis is caused by spatial limitations within the mandible (dental plasticity); and (H3) common genetic/ epigenetic factors cause agenesis and affect mandibular form (pleiotropy). A geometric morphometric analysis was applied to cross-sectional images of computed tomography (CT) scans of three matched groups (n = 50 each): (1) regularly erupted P2;
(2) agenesis of P2 and the primary second molar in situ; and (3) agenesis of P2 and the primary second molar missing for
43 months. Cross-sections of the three areas of interest (first premolar, P2, first molar) were digitized with 23 landmarks and superimposed by a generalized Procrustes analysis. On average, the mandibular cross-sections were narrower and shorter in patients with P2 agenesis compared with that in the control group. Both agenesis groups featured a pronounced submandibular fossa. These differences extended at least one tooth beyond the agenesis-affected region. Taken together with the large interindividual variation that resulted in massively overlapping group distributions, these findings support genetic and/or epigenetic pleiotropy (H3) as the most likely origin of the observed covariation between mandibular form and odontogenesis. Clinically, reduced dimensions and greater variability of mandibular form, as well as a pronounced submandibular fossa, should be expected during the treatment planning of patients with P2 agenesis
Stress Modulation in Pinus spp. Somatic Embryogenesis as Model for Climate Change Mitigation: Stress Is Not Always a Problem
Climate change is leading to higher temperatures and lower precipitation; this fact can have a negative impact on plant performance and survival. Latest findings have revealed that the conditions in which zygotic embryogenesis takes place have an impact on the adaptive capacity of the resulting plants. Somatic embryogenesis provides us a potent biotechnological tool to manipulate the physical and chemical conditions (water availability) along the process and to study their effect in the final success of the process in terms of quantity and quality of somatic plants produced. The development of somatic cells to somatic plantlets comprises three stages: induction of embryonal masses, maturation of embryogenic tissues, and conversion into somatic plants. Our experience in somatic embryogenesis in Pinus spp. enables us to explore the possibility to modulate the quality in terms of abiotic stress tolerance of somatic plants modifying environmental conditions during the initial stages of the process. Our results have shown that the modification of environmental conditions affected not only the success of the process in some species of pines but also the water use efficiency of the somatic plants after several months in ex vitro conditions. In the chapter, we will show the different responses obtained in all the stages of the somatic embryogenesis process as well as the response obtained after drought periods in plants growing in the greenhouse under ex vitro conditions.3A1A-5397-3230 | Jorge Canhotoinfo:eu-repo/semantics/publishedVersio
Repetitive somatic embryogenesis induced cytological and proteomic changes in embryogenic lines of Pseudotsuga menziesii [Mirb.]
Background: To explore poorly understood differences between primary and subsequent somatic embryogenic lines of plants, we induced secondary (2ry) and tertiary (3ry) lines from cotyledonary somatic embryos (SEs) of two Douglas-fir genotypes: SD4 and TD17. The 2ry lines exhibited significantly higher embryogenic potential (SE yields) than the 1ry lines initiated from zygotic embryos (SD4, 2155 vs 477; TD17, 240 vs 29 g(-1) f.w.). Moreover, we observed similar differences in yield between 2ry and 3ry lines of SD4 (2400 vs 3921 g(-1) f.w.). To elucidate reasons for differences in embryogenic potential induced by repetitive somatic embryogenesis we then compared 2ry vs 1ry and 2ry vs 3ry lines at histo-cytological (using LC-MS/MS) and proteomic levels. Results: Repetitive somatic embryogenesis dramatically improved the proliferating lines' cellular organization (genotype SD4's most strongly). Frequencies of singulated, bipolar SEs and compact polyembryogenic centers with elongated suspensors and apparently cleavable embryonal heads increased in 2ry and (even more) 3ry lines. Among 2300-2500 identified proteins, 162 and 228 were classified significantly differentially expressed between 2ry vs 1ry and 3ry vs 2ry lines, respectively, with special emphasis on "Proteolysis" and "Catabolic process" Gene Ontology categories. Strikingly, most of the significant proteins (> 70%) were down-regulated in 2ry relative to 1ry lines, but up-regulated in 3ry relative to 2ry lines, revealing a down-up pattern of expression. GO category enrichment analyses highlighted the opposite adjustments of global protein patterns, particularly for processes involved in chitin catabolism, lignin and L-phenylalanine metabolism, phenylpropanoid biosynthesis, oxidation-reduction, and response to karrikin. Sub-Network Enrichment Analyses highlighted interactions between significant proteins and both plant growth regulators and secondary metabolites after first (especially jasmonic acid, flavonoids) and second (especially salicylic acid, abscisic acid, lignin) embryogenesis cycles. Protein networks established after each induction affected the same "Plant development" and "Defense response" biological processes, but most strongly after the third cycle, which could explain the top embryogenic performance of 3ry lines. Conclusions: This first report of cellular and molecular changes after repetitive somatic embryogenesis in conifers shows that each cycle enhanced the structure and singularization of EMs through modulation of growth regulator pathways, thereby improving the lines' embryogenic status