14 research outputs found

    ASCA solid state imaging spectrometer observations of O stars

    Get PDF
    We report ASCA Solid State Imaging Spectrometer (SIS) x-ray observations of the O stars delta Ori and lambda Ori. The energy resolution of the SIS allows us to resolve features in the O star x-ray spectra which are not apparent in spectra obtained by x-ray spectrometers with lower energy resolution. SIS spectra from both stars show evidence of line emission, suggesting the thermal nature of the x-ray source. However, the observed line strengths are different for the two stars. The observed stellar x-ray spectra are not well described by isothermal models although absorbed thermal emission models with two or more temperatures can provide an adequate fit to the data. For both stars we present evidence of absorbing columns significantly larger than the known ISM columns, indicative of absorption by a circumstellar medium, presumably the stellar winds. In addition, the lambda Ori spectrum shows the presence of emission at energies greater than 3 keV which is not seen in the delta Ori spectrum

    Behavior of Trp-P-1 and Its Metabolites in Rat Excreta.

    Full text link

    Alteration of the function of the UDP-glucuronosyltransferase 1A subfamily by cytochrome P450 3A4: different susceptibility for UGT isoforms and UGT1A1/7 variants.

    Full text link
    Permitted by publisher to link to journal article only.Functional protein-protein interactions between UDP-glucuronosyltransferase (UGT)1A isoforms and cytochrome P450 (CYP)3A4 were studied. To this end, UGT1A-catalyzed glucuronidation was assayed in Sf-9 cells that simultaneously expressed UGT and CYP3A4. In the kinetics of UGT1A6-catalyzed glucuronidation of serotonin, both Michaelis constant (Km) and maximal velocity (Vmax) were increased by CYP3A4. When CYP3A4 was coexpressed with either UGT1A1 or 1A7, the Vmax for the glucuronidation of the irinotecan metabolite (SN-38) was significantly increased. S50 and Km both which are the substrate concentration giving 0.5 Vmax were little affected by simultaneous expression of CYP3A4. This study also examined the catalytic properties of the allelic variants of UGT1A1 and 1A7 and their effects on the interaction with CYP3A4. Although the UGT1A1-catalyzing activity of 4-methylumbelliferone glucuronidation was reduced in its variant, UGT1A1*6, the coexpression of CYP3A4 restored the impaired function to a level comparable with the wild type. Similarly, simultaneous expression of CYP3A4 increased the Vmax of UGT1A7*1 (wild type) and *2 (N129K and R131K), whereas the same was not observed in UGT1A7*3 (N129K, R131K, and W208R). In the kinetics involving different concentrations of UDP-glucuronic acid (UDP-GlcUA), the Km for UDP-GlcUA was significantly higher for UGT1A7*2 and *3 than *1. The Km of UGT1A7*1 and *3 was increased by CYP3A4, whereas *2 did not exhibit any such change. These results suggest that (1) CYP3A4 changes the catalytic function of the UGT1A subfamily in a UGT isoform-specific manner and (2) nonsynonymous mutations in UGT1A7*3 reduce not only the ability of UGT to use UDP-GlcUA but also CYP3A4-mediated enhancement of catalytic activity, whereas CYP3A4 is able to restore the UGT1A1*6 function.Australian National Health and Medical Research Council
    corecore