1,925 research outputs found

    There Is No Now: An Archaeology of Contemporaneity

    Get PDF
    Drawing together discourses on contemporaneity and new materialisms, this book examines a material conception of temporality that makes it possible to develop a critique of the philosophical discourse on presence. Claiming that “there is no now,” Knut Ebeling develops an archaeology of contemporaneity according to which the traces of the contemporary can only be secured through visual or material operations, not historical ones

    Thermodynamics of hot dense H-plasmas: Path integral Monte Carlo simulations and analytical approximations

    Get PDF
    This work is devoted to the thermodynamics of high-temperature dense hydrogen plasmas in the pressure region between 10−110^{-1} and 10210^2 Mbar. In particular we present for this region results of extensive calculations based on a recently developed path integral Monte Carlo scheme (direct PIMC). This method allows for a correct treatment of the thermodynamic properties of hot dense Coulomb systems. Calculations were performed in a broad region of the nonideality parameter Γâ‰Č3\Gamma \lesssim 3 and degeneracy parameter neΛ3â‰Č10n_e \Lambda^3 \lesssim 10. We give a comparison with a few available results from other path integral calculations (restricted PIMC) and with analytical calculations based on Pade approximations for strongly ionized plasmas. Good agreement between the results obtained from the three independent methods is found.Comment: RevTex file, 21 pages, 5 ps-figures include

    Nonlinear Debye-Onsager-Relaxation-Effect

    Full text link
    The quantum kinetic equation for charged particles in strong electric fields is used to derive the nonlinear particle flux. The relaxation field is calculated quantum mechanically up to any order in the applied field provided a given Maxwellian plasma. The classical limit is given in analytical form. In the range of weak fields the deformation of the screening cloud is responsible for the Debye-Onsager relaxation effect.Comment: Proceeding of the 8. International Workshop on Atomic Physics for Ion-Driven Fusion, Heidelberg 1997, appear in Laser and Particle beam

    All-Electron Path Integral Monte Carlo Simulations of Warm Dense Matter: Application to Water and Carbon Plasmas

    Full text link
    We develop an all-electron path integral Monte Carlo (PIMC) method with free-particle nodes for warm dense matter and apply it to water and carbon plasmas. We thereby extend PIMC studies beyond hydrogen and helium to elements with core electrons. PIMC pressures, internal energies, and pair-correlation functions compare well with density functional theory molecular dynamics (DFT-MD) at temperatures of (2.5-7.5)×105\times10^5 K and both methods together form a coherent equation of state (EOS) over a density-temperature range of 3--12 g/cm3^3 and 104^4--109^9 K

    Statistical Mechanics of Canonical-Dissipative Systems and Applications to Swarm Dynamics

    Full text link
    We develop the theory of canonical-dissipative systems, based on the assumption that both the conservative and the dissipative elements of the dynamics are determined by invariants of motion. In this case, known solutions for conservative systems can be used for an extension of the dynamics, which also includes elements such as the take-up/dissipation of energy. This way, a rather complex dynamics can be mapped to an analytically tractable model, while still covering important features of non-equilibrium systems. In our paper, this approach is used to derive a rather general swarm model that considers (a) the energetic conditions of swarming, i.e. for active motion, (b) interactions between the particles based on global couplings. We derive analytical expressions for the non-equilibrium velocity distribution and the mean squared displacement of the swarm. Further, we investigate the influence of different global couplings on the overall behavior of the swarm by means of particle-based computer simulations and compare them with the analytical estimations.Comment: 14 pages incl. 13 figures. v2: misprints in Eq. (40) corrected, ref. updated. For related work see also: http://summa.physik.hu-berlin.de/~frank/active.htm

    Flow measurement using micro-PIV and related temperature distributions within evaporating sessile drops of self-rewetting mixtures of 1-pentanol and water

    Get PDF
    This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.Recently interest has arisen in the use of so-called self-rewetting mixtures for micro-scale heat transfer systems. Such fluids, in which the surface tension can increase with increasing temperature, are expected to offer superior evaporative cooling performance by extending the region of operation before dryout of the heated surface sets in. Whilst improved performance has been shown in some practical situations using these fluids, it is not entirely clear as to the mechanism of such improvements. We have studied the flow within evaporating sessile drops of 1-pentanol-water mixtures using micro-PIV and have observed three stages in the evaporation process. During the first stage there appears to be a single toroidal vortex with flow inwards along the base of the drop. The vortex only occupies the central region of the drop and appears to pulsate, reducing in size during evaporation. This is followed by a second transition stage to a third stage in which the flow is directed radially outward, as observed by us for pure water droplet evaporation and in the latter stages of ethanol/water drop evaporation. Temperature measurements, using IR thermography suggest that the initial stage of evaporation may be controlled by thermal Marangoni effects as opposed to the concentration driven Marangoni flows postulated for ethanol-water mixtures

    Reconstruction of a first-order phase transition from computer simulations of individual phases and subphases

    Full text link
    We present a new method for investigating first-order phase transitions using Monte Carlo simulations. It relies on the multiple-histogram method and uses solely histograms of individual phases. In addition, we extend the method to include histograms of subphases. The free energy difference between phases, necessary for attributing the correct statistical weights to the histograms, is determined by a detour in control parameter space via auxiliary systems with short relaxation times. We apply this method to a recently introduced model for structure formation in polypeptides for which other methods fail.Comment: 13 pages in preprint mode, REVTeX, 2 Figures available from the authors ([email protected], [email protected]

    Measurements of Sunyaev-Zel'dovich Effect Scaling Relations for Clusters of Galaxies

    Full text link
    We present new measurements of the Sunyaev-Zel'dovich (SZ) effect from clusters of galaxies using the Sunyaev-Zel'dovich Infrared Experiment (SuZIE II). We combine these new measurements with previous cluster observations with the SuZIE instrument to form a sample of 15 clusters of galaxies. For this sample we calculate the central Comptonization, y, and the integrated SZ flux decrement, S, for each of our clusters. We find that the integrated SZ flux is a more robust observable derived from our measurements than the central Comptonization due to inadequacies in the spatial modelling of the intra-cluster gas with a standard Beta model. This is highlighted by comparing our central Comptonization results with values calculated from measurements using the BIMA and OVRO interferometers. On average, the SuZIE calculated central Comptonizations are approximately 60% higher in the cooling flow clusters than the interferometric values, compared to only approximately 12% higher in the non-cooling flow clusters. We believe this discrepancy to be in large part due to the spatial modelling of the intra-cluster gas. From our cluster sample we construct y-T and S-T scaling relations. The y-T scaling relation is inconsistent with what we would expect for self-similar clusters; however this result is questionable because of the large systematic uncertainty in the central Comptonization. The S-T scaling relation has a slope and redshift evolution consistent with what we expect for self-similar clusters with a characteristic density that scales with the mean density of the universe. We rule out zero redshift evolution of the S-T relation at 90% confidence.Comment: Accepted to Astrophysical Journal. 52 pages, 14 tables, 7 figures ;replaced to match ApJ accepted versio

    Discovery of an overdensity of faint red galaxies in the vicinity of the z=1.786 radio galaxy 3C 294

    Full text link
    We report the discovery of an overdensity of faint red galaxies in the vicinity of the z=1.786 radio galaxy 3C 294. The overdensity, discovered in a 84 min Ks-band ISAAC/VLT image is significant at the 2.4 sigma level (compared to the local field density), and overlaps with the extended X-ray emission around 3C 294 detected with the Chandra X-ray Observatory. The near-infrared colours of the galaxies making up the overdensity show a large scatter and the galaxies do not follow a red sequence in the colour magnitude diagram. If the galaxies are in a cluster at z=1.786 they must be dominated by young stellar populations with different star-formation histories.Comment: Accepted for publication in MNRA

    SPEAR Far Ultraviolet Spectral Images of the Cygnus Loop

    Full text link
    We present far-ultraviolet (FUV) spectral images, measured at C IV 1550, He II 1640, Si IV+O IV] 1400, and O III] 1664, of the entire Cygnus Loop, observed with the Spectroscopy of Plasma Evolution from Astrophysical Radiation (SPEAR) instrument, also known as FIMS. The spatial distribution of FUV emission generally corresponds with a limb-brightened shell, and is similar to optical, radio and X-ray images. The features found in the present work include a ``carrot'', diffuse interior, and breakout features, which have not been seen in previous FUV studies. Shock velocities of 140-160 km/s is found from a line ratio of O IV] to O III], which is insensitive not only to resonance scattering but also to elemental abundance. The estimated velocity indicates that the fast shocks are widespread across the remnant. By comparing various line ratios with steady-state shock models, it is also shown that the resonance scattering is widespread.Comment: 13 pages, 3 figures, 1 table, accepted for publication in ApJ
    • 

    corecore