65,931 research outputs found
Deformation mechanisms leading to auxetic behaviour in the α-cristobalite and α-quartz structures of both silica and germania
Analytical expressions have been developed in which the elastic behaviour of the α-quartz and α-cristobalite molecular tetrahedral frameworks of both silica and germania are modelled by rotation, or dilation or concurrent rotation and dilation of the tetrahedra. Rotation and dilation of the tetrahedra both produce negative Poisson’s ratios (auxetic behaviour), whereas both positive and negative values are possible when these mechanisms act concurrently. Concurrent rotation and dilation of the tetrahedra reproduces with remarkable accuracy both the positive and negative nu31 Poisson’s ratios observed in silica α-quartz and α-cristobalite, respectively, when loaded in the x3 direction. A parametric fit of the concurrent model to the germania α-quartz experimental nu31 Poisson’s ratio is used to predict nu31 for germania α-cristobalite, for which no experimental value exists. This is predicted to be +0.007. Strain-dependent nu31 trends, due to concurrent rotation and dilation in the silica structures, are in broad agreement with those predicted from pair-potential calculations, although significant differences do occur in the absolute values. Concurrent dilation and rotation of the tetrahedra predicts that an alternative uniaxial stress (sigma3)-induced phase exists for both silica α-quartz and α-cristobalite and germania α-cristobalite, having geometries in reasonable agreement with beta-quartz and idealised beta-cristobalite, respectively
Johnson-Kendall-Roberts theory applied to living cells
Johnson-Kendall-Roberts (JKR) theory is an accurate model for strong adhesion
energies of soft slightly deformable material. Little is known about the
validity of this theory on complex systems such as living cells. We have
addressed this problem using a depletion controlled cell adhesion and measured
the force necessary to separate the cells with a micropipette technique. We
show that the cytoskeleton can provide the cells with a 3D structure that is
sufficiently elastic and has a sufficiently low deformability for JKR theory to
be valid. When the cytoskeleton is disrupted, JKR theory is no longer
applicable
Magnetically suspended flywheel system study
A program to study the application of a graphite/epoxy, magnetically suspended, pierced disk flywheel for the combined function of spacecraft attitude control and energy storage (ACES) is described. Past achievements of the program include design and analysis computer codes for the flywheel rotor, a magnetically suspended flywheel model, and graphite/epoxy rotor rings that were successfully prestressed via interference assembly. All hardware successfully demonstrated operation of the necessary subsystems which form a complete ACES design. Areas of future work include additional rotor design research, system definition and control strategies, prototype development, and design/construction of a UM/GSFC spin test facility. The results of applying design and analysis computer codes to a magnetically suspended interference assembled rotor show specific energy densities of 42 Wh/lb (92.4 Wh/kg) are obtained for a 1.6 kWh system
Microlensing Halo Models with Abundant Brown Dwarfs
All previous attempts to understand the microlensing results towards the
Large Magellanic Cloud (LMC) have assumed homogeneous present day mass
functions (PDMFs) for the lensing populations. Here, we present an
investigation into the microlensing characteristics of haloes with spatially
varying PDMFs and anisotropic velocity dispersion tensors. One attractive
possibility -- suggested by baryonic dark cluster formation in pregalactic and
protogalactic cooling flows -- is that the inner halo is dominated by stellar
mass objects, whereas low mass brown dwarfs become more prevalent on moving
outwards. The contribution to the microlensing rate must be dominated by dark
remnants (of about 0.5 solar masses) to recover the observed timescales of the
microlensing experiments. But, even though stellar remnants control the rate,
they do not dominate the mass of the baryonic halo, and so the well-known
enrichment and mass budget problems are much less severe. Using a simple ansatz
for the spatial variation of the PDMF, models are constructed in which the
contribution of brown dwarfs to the mass of the baryonic halo is 55 % and to
the total halo is 30 %. An unusual property of the models is that they predict
that the average timescale of events towards M31 is shorter than the average
timescale towards the LMC. This is because the longer line of sight towards M31
probes more of the far halo where brown dwarfs are the most common constituent.Comment: 17 pages, 1 figure, in press at The Astrophysical Journal (Letters
Indoor radio channel characterization and modeling for a 5.2-GHz bodyworn receiver
[Abstract]: Wireless local area network applications may include the use of bodyworn or handportable terminals. For the first time, this paper compares measurements and simulations of a narrowband 5.2-GHz radio channel incorporating a fixed transmitter and a mobile bodyworn receiver. Two indoor environments were considered,
an 18-m long corridor and a 42-m2 office. The modeling
technique was a site-specific ray-tracing simulator incorporating the radiation pattern of the bodyworn receiver. In the corridor, the measured body-shadowing effect was 5.4 dB, while it was 15.7 dB in the office. First- and second-order small-scale fading statistics
for the measured and simulated results are presented and compared with theoretical Rayleigh and lognormal distributions. The root mean square error in the cumulative distributions for the simulated results was less than 0.74% for line-of-sight conditions and less than 1.4% for nonline-of-sight conditions
Synchronized voltage contrast display analysis system
An apparatus and method for comparing internal voltage potentials of first and second operating electronic components such as large scale integrated circuits (LSI's) in which voltage differentials are visually identified via an appropriate display means are described. More particularly, in a first embodiment of the invention a first and second scanning electron microscope (SEM) are configured to scan a first and second operating electronic component respectively. The scan pattern of the second SEM is synchronized to that of the first SEM so that both simultaneously scan corresponding portions of the two operating electronic components. Video signals from each SEM corresponding to secondary electron signals generated as a result of a primary electron beam intersecting each operating electronic component in accordance with a predetermined scan pattern are provided to a video mixer and color encoder
Modelling one-dimensional driven diffusive systems by the Zero-Range Process
The recently introduced correspondence between one-dimensional two-species
driven models and the Zero-Range Process is extended to study the case where
the densities of the two species need not be equal. The correspondence is
formulated through the length dependence of the current emitted from a particle
domain. A direct numerical method for evaluating this current is introduced,
and used to test the assumptions underlying this approach. In addition, a model
for isolated domain dynamics is introduced, which provides a simple way to
calculate the current also for the non-equal density case. This approach is
demonstrated and applied to a particular two-species model, where a phase
separation transition line is calculated
Propagation modelling and measurements in a populated indoor environment at 5.2 GHz
There are a number of significant radiowave propagation phenomena present in the populated indoor environment, including multipath fading and human body effects. The latter can be divided into shadowing and scattering caused by pedestrian movement, and antenna-body interaction with bodyworn or hand portable terminals [1]. Human occupants within indoor environments are not always stationary and their movement will lead to temporal channel variations that can strongly affect the quality of indoor wireless communication systems. Hence, populated environments remain a major challenge for wireless local area networks (WLAN) and other indoor communication systems. Therefore, it is important to develop an understanding of the potential and limitations of indoor radiowave propagation at key frequencies of interest, such as the 5.2 GHz band employed by commercial wireless LAN standards such as IEEE 802.11a and HiperLAN 2.
Although several indoor wireless models have been proposed in the literature, these temporal variations have not yet been thoroughly investigated. Therefore, we have made an important contribution to the area by conducting a systematic study of the problem, including a propagation measurement campaign and statistical channel characterization of human body effects on line-of-sight indoor propagation at 5.2 GHz.
Measurements were performed in the everyday environment of a 7.2 m wide University hallway to determine the statistical characteristics of the 5.2 GHz channel for a fixed, transverse line-of-sight (LOS) link perturbed by pedestrian movement. Data were acquired at hours of relatively high pedestrian activity, between 12.00 and 14.00. The location was chosen as a typical indoor wireless system environment that had sufficient channel variability to permit a valid statistical analysis.
The paper compares the first and second order statistics of the empirical signals with the Gaussian-derived distributions commonly used in wireless communications. The analysis shows that, as the number of pedestrians within the measurement location increases, the Ricean K-factor that best fits the Cumulative Distribution Function (CDF) of the empirical data tends to decrease proportionally, ranging from K=7 with 1 pedestrian to K=0 with 4 pedestrians. These results are consistent with previous results obtained for controlled measurement scenarios using a fixed link at 5.2 GHz in [2], where the K factor reduced as the number of pedestrians within a controlled measurement area increased. Level crossing rate results were Rice distributed, considering a maximum Doppler frequency of 8.67 Hz. While average fade duration results were significantly higher than theoretically computed Rice and Rayleigh, due to the fades caused by pedestrians.
A novel statistical model that accurately describes the 5.2 GHz channel in the considered indoor environment is proposed. For the first time, the received envelope CDF is explicitly described in terms of a quantitative measurement of pedestrian traffic within the indoor environment. The model provides an insight into the prediction of human body shadowing effects for indoor channels at 5.2 GHz
Post-injection normal closure of fractures as a mechanism for induced seismicity
Understanding the controlling mechanisms underlying injection-induced
seismicity is important for optimizing reservoir productivity and addressing
seismicity-related concerns related to hydraulic stimulation in Enhanced
Geothermal Systems. Hydraulic stimulation enhances permeability through
elevated pressures, which cause normal deformations, and the shear slip of
pre-existing fractures. Previous experiments indicate that fracture deformation
in the normal direction reverses as the pressure decreases, e.g., at the end of
stimulation. We hypothesize that this normal closure of fractures enhances
pressure propagation away from the injection region and significantly increases
the potential for post-injection seismicity. To test this hypothesis, hydraulic
stimulation is modeled by numerically coupling fracture deformation, pressure
diffusion and stress alterations for a synthetic geothermal reservoir in which
the flow and mechanics are strongly affected by a complex three-dimensional
fracture network. The role of the normal closure of fractures is verified by
comparing simulations conducted with and without the normal closure effect
- …