8 research outputs found
The State-Vector Space for Two-Mode Parabosons and Charged Parabose Coherent States
The structure of the state-vector space for the two-mode parabose system is
investigated and a complete set of state-vectors is constructed. The basis
vectors are orthonormal in order . In order , conserved-charge
parabose coherent states are constructed and an explicit completeness relation
is obtained.Comment: 13 pages, LaTeX file, no figures and no macro
Pairing of Parafermions of Order 2: Seniority Model
As generalizations of the fermion seniority model, four multi-mode
Hamiltonians are considered to investigate some of the consequences of the
pairing of parafermions of order two. 2-particle and 4-particle states are
explicitly constructed for H_A = - G A^+ A with A^+}= 1/2 Sum c_{m}^+ c_{-m}^+
and the distinct H_C = - G C^+ C with C^+}= 1/2 Sum c_{-m}^+ c_{m}^+, and for
the time-reversal invariant H_(-)= -G (A^+ - C^+)(A-C) and H_(+) = -G
(A^+dagger + C^+)(A+C), which has no analogue in the fermion case. The spectra
and degeneracies are compared with those of the usual fermion seniority model.Comment: 18 pages, no figures, no macro
A Natural Language Processing System That Links Medical Terms in Electronic Health Record Notes to Lay Definitions: System Development Using Physician Reviews
BACKGROUND: Many health care systems now allow patients to access their electronic health record (EHR) notes online through patient portals. Medical jargon in EHR notes can confuse patients, which may interfere with potential benefits of patient access to EHR notes.
OBJECTIVE: The aim of this study was to develop and evaluate the usability and content quality of NoteAid, a Web-based natural language processing system that links medical terms in EHR notes to lay definitions, that is, definitions easily understood by lay people.
METHODS: NoteAid incorporates two core components: CoDeMed, a lexical resource of lay definitions for medical terms, and MedLink, a computational unit that links medical terms to lay definitions. We developed innovative computational methods, including an adapted distant supervision algorithm to prioritize medical terms important for EHR comprehension to facilitate the effort of building CoDeMed. Ten physician domain experts evaluated the user interface and content quality of NoteAid. The evaluation protocol included a cognitive walkthrough session and a postsession questionnaire. Physician feedback sessions were audio-recorded. We used standard content analysis methods to analyze qualitative data from these sessions.
RESULTS: Physician feedback was mixed. Positive feedback on NoteAid included (1) Easy to use, (2) Good visual display, (3) Satisfactory system speed, and (4) Adequate lay definitions. Opportunities for improvement arising from evaluation sessions and feedback included (1) improving the display of definitions for partially matched terms, (2) including more medical terms in CoDeMed, (3) improving the handling of terms whose definitions vary depending on different contexts, and (4) standardizing the scope of definitions for medicines. On the basis of these results, we have improved NoteAid\u27s user interface and a number of definitions, and added 4502 more definitions in CoDeMed.
CONCLUSIONS: Physician evaluation yielded useful feedback for content validation and refinement of this innovative tool that has the potential to improve patient EHR comprehension and experience using patient portals. Future ongoing work will develop algorithms to handle ambiguous medical terms and test and evaluate NoteAid with patients
Atoms interacting with intense, high-frequency laser pulses: Effect of the magnetic-field component on atomic stabilization
Published versio