14 research outputs found
Influence of molecular weight average, degree of crystallinity, and viscosity of different polyamide PA12 powder grades on the microstructures of laser sintered part
Laser Sintering (LS) allows functional parts to be produced in a wide range of powdered materials using a dedicated machine, and is thus gaining popularity within the field of rapid prototyping. It offers the user the ability to optimise part design in order to meet customer requirements with few manufacturing restrictions. A problem with LS is that sometimes the surface of the parts produced displays a texture similar to that of the skin of an orange (the so-called “orange peel” texture). The main aim of this research is to develop a methodology of controlling the input material properties of PA12 powder that will ensure consistent and good quality of the fabricated parts. Melt Flow Rate (MFR) and Gel permeation chromatography (GPC) were employed to measure the flow viscosity and molecular weight distributions of Polyamide PA12 powder grades. The experimental results proved that recycle PA12 powder with higher melt viscosity polymer has a higher entanglement with a longer molecule chain causes a higher resistance to flow which cause poor and rough surface finished on laser sintered part
Effect of employing different grades of recycled polyamide 12 on the surface texture of laser sintered (LS) parts
Laser sintering (LS) is one of the most versatile rapid prototyping (RP) processes currently available. One of the main advantages of employing this technology is that the non-sintered powder can be recycled and reused for further fabrication. Current powder recycling methodologies using a constant refresh rate with a very high portion of new material being added to the existing material reserve in order to maintain part quality and integrity. If the amount of the new powder is insufficient or if the recycled material is too “old” (i.e. has been recycled too many times), then the fabricated parts experience variation in their quality. Typical quality defects include; higher shrinkage rates and rougher than average surface textures often known as “orange peel”. This paper reports on an experimental study to investigate the significance of different deteriorated recycle Polyamide 12 (PA12) powders on the surface quality of products. The main aim of this research is to determine and acceptable ratio quantities of virgin to recycled powder that can be used before adversely affecting product surface texture. In this experiment, the melt flow rate (MFR) is chosen as a criterion to measure the recycled powder quality. The microstructures of external surface and cross sectional parts which employed the different grades of recycled powder quality were examined. The results of experiment suggested that the refresh powder target must be at least 27MFR in order to produce a LS good part surface
Methodology – A Review of Intelligent Manufacturing Scope, Strategy and Simulation
This paper presents a critical review of some existing modelling, control and optimization techniques for energy saving, carbon emission reduction in manufacturing processes. The study on various production issues reveals different levels of intelligent manufacturing approaches. Then methods and strategies to tackle the sustainability issues in manufacturing are summarized. Modelling tools such as discrete (dynamic) event system (DES/DEDS) and agent-based modelling/simulation (ABS) approaches are reviewed from the production planning and control prospective. These approaches will provide some guidelines for the development of advanced factory modelling, resource flow analysis and assisting the identification of improvement potentials, in order to achieve more sustainable manufacturing
Influence of Molecular Weight Average, Degree of Crystallinity, and Viscosity of Different Polyamide PA12 Powder Grades on the Microstructures of Laser Sintered Part
Laser Sintering (LS) allows functional parts to be produced in a wide range of powdered materials using a dedicated machine, and is thus gaining popularity within the field of rapid prototyping. It offers the user the ability to optimise part design in order to meet customer requirements with few manufacturing restrictions. A problem with LS is that sometimes the surface of the parts produced displays a texture similar to that of the skin of an orange (the so-called “orange peel” texture). The main aim of this research is to develop a methodology of controlling the input material properties of PA12 powder that will ensure consistent and good quality of the fabricated parts. Melt Flow Rate (MFR) and Gel permeation chromatography (GPC) were employed to measure the flow viscosity and molecular weight distributions of Polyamide PA12 powder grades. The experimental results proved that recycle PA12 powder with higher melt viscosity polymer has a higher entanglement with a longer molecule chain causes a higher resistance to flow which cause poor and rough surface finished on laser sintered part
Influence of molecular weight average, degree of crystallinity, and viscosity of different polyamide PA12 powder grades on the microstructures of laser sintered part
Laser Sintering (LS) allows functional parts to be produced in a wide range of powdered materials using a dedicated machine, and is thus gaining popularity within the field of rapid prototyping. It offers the user the ability to optimise part design in order to meet customer requirements with few manufacturing restrictions. A problem with LS is that sometimes the surface of the parts produced displays a texture similar to that of the skin of an orange (the socalled “orange peel” (texture). The main aim of this research is to develop a methodology of controlling the input material properties of PA12
powder that will ensure consistent and good quality of the fabricated parts. Melt Flow Rate (MFR) and Gel permeation chromatography (GPC) were employed to measure the flow viscosity and molecular weight distributions of Polyamide PA12 powder grades. The experimental results proved that recycle PA12 powder with higher melt viscosity polymer has a higher entanglement with a longer molecule chain causes a higher resistance to flow which cause poor and rough surface finished on laser sintered par