158 research outputs found
P05-11. Yeast mannan genetics controls the molecular specificity of anti-carbohydrate antibodies cross-reactive to the HIV envelope
Immunologically self carbohydrates protect the human immunodeficiency virus type -1 (HIV-1) surface glycoprotein, gp120 from antibody recognition. However, one broadly neutralising antibody, 2G12, can protect against primary viral challenge by direct recognition of these "self" glycans on gp120
HIV-1 glycan density drives the persistence of the mannose patch within an infected individual.
CAPRISA, 2016.Abstract available in pdf
Comparative assessment of multiple COVID-19 serological technologies supports continued evaluation of point-of-care lateral flow assays in hospital and community healthcare settings
There is a clear requirement for an accurate SARS-CoV-2 antibody test, both as a complement to existing diagnostic capabilities and for determining community seroprevalence. We therefore evaluated the performance of a variety of antibody testing technologies and their potential use as diagnostic tools. Highly specific in-house ELISAs were developed for the detection of anti-spike (S), -receptor binding domain (RBD) and -nucleocapsid (N) antibodies and used for the cross-comparison of ten commercial serological assays-a chemiluminescence-based platform, two ELISAs and seven colloidal gold lateral flow immunoassays (LFIAs)-on an identical panel of 110 SARS-CoV-2-positive samples and 50 pre-pandemic negatives. There was a wide variation in the performance of the different platforms, with specificity ranging from 82% to 100%, and overall sensitivity from 60.9% to 87.3%. However, the head-to-head comparison of multiple sero-diagnostic assays on identical sample sets revealed that performance is highly dependent on the time of sampling, with sensitivities of over 95% seen in several tests when assessing samples from more than 20 days post onset of symptoms. Furthermore, these analyses identified clear outlying samples that were negative in all tests, but were later shown to be from individuals with mildest disease presentation. Rigorous comparison of antibody testing platforms will inform the deployment of point-of-care technologies in healthcare settings and their use in the monitoring of SARS-CoV-2 infections
Acute immune signatures and their legacies in severe acute respiratory syndrome coronavirus-2 infected cancer patients
Given the immune systemβs importance for cancer surveillance and treatment, we have investigated how it
may be affected by SARS-CoV-2 infection of cancer patients. Across some heterogeneity in tumor type,
stage, and treatment, virus-exposed solid cancer patients display a dominant impact of SARS-CoV-2,
apparent from the resemblance of their immune signatures to those for COVID-19+ non-cancer patients.
This is not the case for hematological malignancies, with virus-exposed patients collectively displaying heterogeneous humoral responses, an exhausted T cell phenotype and a high prevalence of prolonged virus
shedding. Furthermore, while recovered solid cancer patientsβ immunophenotypes resemble those of nonvirus-exposed cancer patients, recovered hematological cancer patients display distinct, lingering immunological legacies. Thus, while solid cancer patients, including those with advanced disease, seem no more at
risk of SARS-CoV-2-associated immune dysregulation than the general population, hematological cancer
patients show complex immunological consequences of SARS-CoV-2 exposure that might usefully inform
their care
Longitudinal Study of Primary HIV-1 Isolates in Drug-NaΓ―ve Individuals Reveals the Emergence of Variants Sensitive to Anti-HIV-1 Monoclonal Antibodies
To study how virus evolution affects neutralization sensitivity and to determine changes that occur in and around epitopes, we tested the ability of 13 anti-HIV-1 gp120 (anti-V2, anti-V3, anti-CD4bd and anti-carbohydrate) human monoclonal antibodies (mAbs) to neutralize sequential viruses obtained from five HIV-1 chronically infected drug naΓ―ve individuals. Overall, primary viruses collected from patients at first visit were resistant to neutralization by all anti-HIV-1 mAbs with the exception of one virus sensitive to IgG1b12. Four of the five patients' viruses evolved increased sensitivity to neutralization by anti-V3 mAbs. Virus collected from a patient obtained 31 months later, evolved increased sensitivity to anti-V2, anti-V3, and anti-CD4bd mAbs. Furthermore, the anti-V2 and anti-CD4bd mAbs also exhibited increased neutralization capacities against virus collected from a patient 29 months later. Of the seven anti-V3 mAbs, five showed increased potency to neutralize the evolved virus from a patient collected after 11 months, and three exhibited increased potency against viruses from two patients collected 29 and 36 months later. Anti-V3 mAbs exhibited the most breadth and potency in neutralizing the evolving viruses. Sequence analysis of the envelope regions revealed amino acid conservation within the V3 loop, while most of the changes identified occurred outside the core epitopes and in particular within the C3 region; these may account for increased neutralization sensitivity. These studies demonstrate that in vivo, HIV-1 can evolve increased neutralization sensitivity to mAbs and that the spectrum of neutralization capacities by mAbs can be broader when studied in longitudinal analysis
Real-world evaluation of a novel technology for quantitative simultaneous antibody detection against multiple SARS-CoV-2 antigens in a cohort of patients presenting with COVID-19 syndrome
This is the final version. Available from the publisher via the DOI in this record.An evaluation of a rapid portable gold-nanotechnology measuring SARS-CoV-2 IgM, IgA and IgG antibody concentrations against spike 1 (S1), spike 2 (S) and nucleocapsid (N) was conducted using serum
samples from 74 patients tested for SARS-CoV-2 RNA on admission to hospital, and 47 historical control
patients from March 2019. 59 patients were RNA(+) and 15 were RNA(β). A serum (Β±) classification was
derived for all three antigens and a quantitative serological profile was obtained. Serum(+) was identified
in 30% (95% CI 11β48) of initially RNA(β) patients, in 36% (95% CI 17β54) of RNA(+) patients before 10
days, 77% (95% CI 67β87) between 10 and 20 days and 95% (95% CI 86β100) after 21 days. The patientlevel diagnostic accuracy relative to RNA(Β±) after 10 days displayed 88% sensitivity (95% CI 75β95) and
75% specificity (95% CI 22β99), although specificity compared with historical controls was 100% (95%CI
91β100). This study provides robust support for further evaluation and validation of this novel technology
in a clinical setting and highlights challenges inherent in assessment of serological tests for an emerging
disease such as COVID-19.Engineering and Physical Sciences Research Council (EPSRC)Attomarker Lt
Investigation of Griffithsin's Interactions with Human Cells Confirms Its Outstanding Safety and Efficacy Profile as a Microbicide Candidate
Many natural product-derived lectins such as the red algal lectin griffithsin (GRFT) have potent in vitro activity against viruses that display dense clusters of oligomannose N-linked glycans (NLG) on their surface envelope glycoproteins. However, since oligomannose NLG are also found on some host proteins it is possible that treatment with antiviral lectins may trigger undesirable side effects. For other antiviral lectins such as concanavalin A, banana lectin and cyanovirin-N (CV-N), interactions between the lectin and as yet undescribed cellular moieties have been reported to induce undesirable side effects including secretion of inflammatory cytokines and activation of host T-cells. We show that GRFT, unlike CV-N, binds the surface of human epithelial and peripheral blood mononuclear cells (PBMC) through an exclusively oligosaccharide-dependent interaction. In contrast to several other antiviral lectins however, GRFT treatment induces only minimal changes in secretion of inflammatory cytokines and chemokines by epithelial cells or human PBMC, has no measureable effect on cell viability and does not significantly upregulate markers of T-cell activation. In addition, GRFT appears to retain antiviral activity once bound to the surface of PBMC. Finally, RNA microarray studies show that, while CV-N and ConA regulate expression of a multitude of cellular genes, GRFT treatment effects only minimal alterations in the gene expression profile of a human ectocervical cell line. These studies indicate that GRFT has an outstanding safety profile with little evidence of induced toxicity, T-cell activation or deleterious immunological consequence, unique attributes for a natural product-derived lectin
Characteristics of the Earliest Cross-Neutralizing Antibody Response to HIV-1
Recent cross-sectional analyses of HIV-1+ plasmas have indicated that broadly cross-reactive neutralizing antibody responses are developed by 10%β30% of HIV-1+ subjects. The timing of the initial development of such anti-viral responses is unknown. It is also unknown whether the emergence of these responses coincides with the appearance of antibody specificities to a single or multiple regions of the viral envelope glycoprotein (Env). Here we analyzed the cross-neutralizing antibody responses in longitudinal plasmas collected soon after and up to seven years after HIV-1 infection. We find that anti-HIV-1 cross-neutralizing antibody responses first become evident on average at 2.5 years and, in rare cases, as early as 1 year following infection. If cross-neutralizing antibody responses do not develop during the first 2β3 years of infection, they most likely will not do so subsequently. Our results indicate a potential link between the development of cross-neutralizing antibody responses and specific activation markers on T cells, and with plasma viremia levels. The earliest cross-neutralizing antibody response targets a limited number of Env regions, primarily the CD4-binding site and epitopes that are not present on monomeric Env, but on the virion-associated trimeric Env form. In contrast, the neutralizing activities of plasmas from subjects that did not develop cross-neutralizing antibody responses target epitopes on monomeric gp120 other than the CD4-BS. Our study provides information that is not only relevant to better understanding the interaction of the human immune system with HIV but may guide the development of effective immunization protocols. Since antibodies to complex epitopes that are present on the virion-associated envelope spike appear to be key components of earliest cross-neutralizing activities of HIV-1+ plasmas, then emphasis should be made to elicit similar antibodies by vaccination
- β¦