271 research outputs found
Requirements for contractility in disordered cytoskeletal bundles
Actomyosin contractility is essential for biological force generation, and is
well understood in highly organized structures such as striated muscle.
Additionally, actomyosin bundles devoid of this organization are known to
contract both in vivo and in vitro, which cannot be described by standard
muscle models. To narrow down the search for possible contraction mechanisms in
these systems, we investigate their microscopic symmetries. We show that
contractile behavior requires non-identical motors that generate large enough
forces to probe the nonlinear elastic behavior of F-actin. This suggests a role
for filament buckling in the contraction of these bundles, consistent with
recent experimental results on reconstituted actomyosin bundles.Comment: 10 pages, 6 figures; text shortene
Optimization of drift gases for accuracy in pressurized drift tubes
Modern detectors such as ATLAS use pressurized drift tubes to minimize diffusion and achieve high coordinate accuracy. However, the coordinate accuracy depends on the exact knowledge of converting measured times into coordinates. Linear space-time relationships are best for reconstruction, but difficult to achieve in the field. Previous mixtures, which contained methane or other organic quenchers, are disfavored because of ageing problems. From our studies of nitrogen and carbon dioxide, two mixtures with only small deviations from linearity were determined and measured. Scaling laws for different pressures and magnetic fields are also given
Two State Behavior in a Solvable Model of -hairpin folding
Understanding the mechanism of protein secondary structure formation is an
essential part of protein-folding puzzle. Here we describe a simple model for
the formation of the -hairpin, motivated by the fact that folding of a
-hairpin captures much of the basic physics of protein folding. We argue
that the coupling of ``primary'' backbone stiffness and ``secondary'' contact
formation (similar to the coupling between the ``secondary'' and ``tertiary''
structure in globular proteins), caused for example by side-chain packing
regularities, is responsible for producing an all-or-none 2-state
-hairpin formation. We also develop a recursive relation to compute the
phase diagram and single exponential folding/unfolding rate arising via a
dominant transition state.Comment: Revised versio
The interpretation of the field angle dependence of the critical current in defect-engineered superconductors
We apply the vortex path model of critical currents to a comprehensive
analysis of contemporary data on defect-engineered superconductors, showing
that it provides a consistent and detailed interpretation of the experimental
data for a diverse range of materials. We address the question of whether
electron mass anisotropy plays a role of any consequence in determining the
form of this data and conclude that it does not. By abandoning this false
interpretation of the data, we are able to make significant progress in
understanding the real origin of the observed behavior. In particular, we are
able to explain a number of common features in the data including shoulders at
intermediate angles, a uniform response over a wide angular range and the
greater discrimination between individual defect populations at higher fields.
We also correct several misconceptions including the idea that a peak in the
angular dependence of the critical current is a necessary signature of strong
correlated pinning, and conversely that the existence of such a peak implies
the existence of correlated pinning aligned to the particular direction. The
consistency of the vortex path model with the principle of maximum entropy is
introduced.Comment: 14 pages, 7 figure
Modeling study on the validity of a possibly simplified representation of proteins
The folding characteristics of sequences reduced with a possibly simplified
representation of five types of residues are shown to be similar to their
original ones with the natural set of residues (20 types or 20 letters). The
reduced sequences have a good foldability and fold to the same native structure
of their optimized original ones. A large ground state gap for the native
structure shows the thermodynamic stability of the reduced sequences. The
general validity of such a five-letter reduction is further studied via the
correlation between the reduced sequences and the original ones. As a
comparison, a reduction with two letters is found not to reproduce the native
structure of the original sequences due to its homopolymeric features.Comment: 6 pages with 4 figure
Coarse grained description of the protein folding
We consider two- and three-dimensional lattice models of proteins which were
characterized previously. We coarse grain their folding dynamics by reducing it
to transitions between effective states. We consider two methods of selection
of the effective states. The first method is based on the steepest descent
mapping of states to underlying local energy minima and the other involves an
additional projection to maximally compact conformations. Both methods generate
connectivity patterns that allow to distinguish between the good and bad
folders. Connectivity graphs corresponding to the folding funnel have few loops
and are thus tree-like. The Arrhenius law for the median folding time of a
16-monomer sequence is established and the corresponding barrier is related to
easily identifiable kinetic trap states.Comment: REVTeX, 9 pages, 15 EPS figures, to appear in Phys. Rev.
Conformations of Randomly Linked Polymers
We consider polymers in which M randomly selected pairs of monomers are
restricted to be in contact. Analytical arguments and numerical simulations
show that an ideal (Gaussian) chain of N monomers remains expanded as long as
M<<N; its mean squared end to end distance growing as r^2 ~ M/N. A possible
collapse transition (to a region of order unity) is related to percolation in a
one dimensional model with long--ranged connections. A directed version of the
model is also solved exactly. Based on these results, we conjecture that the
typical size of a self-avoiding polymer is reduced by the links to R >
(N/M)^(nu). The number of links needed to collapse a polymer in three
dimensions thus scales as N^(phi), with (phi) > 0.43.Comment: 6 pages, 3 Postscript figures, LaTe
Scaling of folding properties in simple models of proteins
Scaling of folding properties of proteins is studied in a toy system -- the
lattice Go model with various two- and three- dimensional geometries of the
maximally compact native states. Characteristic folding times grow as power
laws with the system size. The corresponding exponents are not universal.
Scaling of the thermodynamic stability also indicates size-related
deterioration of the folding properties.Comment: REVTeX, 4 pages, 4 EPS figures, PRL (in press
Ground States of Two-Dimensional Polyampholytes
We perform an exact enumeration study of polymers formed from a (quenched)
random sequence of charged monomers , restricted to a 2-dimensional
square lattice. Monomers interact via a logarithmic (Coulomb) interaction. We
study the ground state properties of the polymers as a function of their excess
charge for all possible charge sequences up to a polymer length N=18. We
find that the ground state of the neutral ensemble is compact and its energy
extensive and self-averaging. The addition of small excess charge causes an
expansion of the ground state with the monomer density depending only on .
In an annealed ensemble the ground state is fully stretched for any excess
charge .Comment: 6 pages, 6 eps figures, RevTex, Submitted to Phys. Rev.
Electrocerebral Recovery During the Intracarotid Amobarbital Procedure: Influence of Interval Between Injections
Purpose and Methods : During the intracarotid amobarbital procedure (IAP) at the University of Michigan, continuous scalp EEG monitoring guides the timing for presentation of memory items and postinjection testing. Most of our patients have undergone bilateral injections. The interval between injections varied from 22 to 60 min, depending on the test and recovery time, as well as the time to catheterize the second side. After noting a trend toward prolonged electro-graphic recovery following the second injection, we tested our clinical impression that recovery of the second hemisphere may be influenced by (a) the time between injections and (b) which hemisphere is injected first (epileptogenic or nonepileptogenic). To study these questions, we analyzed EEG recovery data from 48 consecutive IAPs. Approximately half the patients had the epileptogenic side injected first. Results : We found that (a) electrographic recovery after the second injection is prolonged if the interval between bilateral injections is less than 40 minutes and (b) electrographic recovery is more rapid after injection of the epileptogenic hemisphere. Conclusions : We now recommend waiting at least 45 min between injections. The pathophysiology of more prolonged amobarbital effect on the nonepileptogenic hemisphere than on the epileptogenic hemisphere remains unclear.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65275/1/j.1528-1157.1997.tb00067.x.pd
- …