8 research outputs found

    Fungal Biotechnology in Space: Why and How?

    Get PDF
    Fungi have been companions of mankind for millennia. Mushrooms inspired our eating culture, and yeasts and filamentous fungi were developed into highly efficient cell factories during the last 100 years to produce many products utilized in different industries worldwide. What more is to come in the next 100 years? We propose here that fungi can become important cell factories for life in space, especially regarding the filamentous fungus Aspergillus niger as the cutting-edge must-have for space travel in the twenty-first century and beyond. First, it is one of the most robust and efficient production systems used nowadays in industrial biotechnology. Second, it is a multipurpose cell factory that produces a diverse range of organic acids, proteins, enzymes and natural products. And third, it is a common fungal isolate of the International Space Station. A. niger could thus become an essential companion of astronauts for the autonomous production of food, enzymes and antibiotics during space travel. What needs to be done to achieve these visionary goals? In this chapter, we will discuss the opportunities of A. niger as a cell factory spanning from Earth to space. We summarize the current state of the art of A. niger biotechnology on Earth and discuss the general tools and technologies still in need of development to take a new step for mankind: space biotechnology

    Transparent and Flexible Mn 1−

    Full text link
    Control over the fabrication of state-of-the-art portable pseudocapacitors with the desired transparency, mechanical flexibility, capacitance, and durability is challenging, but if resolved will have fundamental implications. Here, defect-rich Mn1−x−y(CexLay)O2−δ ultrathin films with controllable thicknesses (5–627 nm) and transmittance (≈29–100%) are fabricated via an electrochemical chronoamperometric deposition using a aqueous precursor derived from end-of-life nickel-metal hydride batteries. Due to percolation impacts on the optoelectronic properties of ultrathin films, a representative Mn1−x−y(CexLay)O2−δ film with 86% transmittance exhibits an outstanding areal capacitance of 3.4 mF cm−2, mainly attributed to the intercalation/de-intercalation of anionic O2− through the atomic tunnels of the stratified Mn1−x−y(CexLay)O2−δ crystallites. Furthermore, the Mn1−x−y(CexLay)O2−δ thin-film device exhibits excellent capacitance retention of ≈90% after 16 000 cycles. Such stability is associated with intervalence charge transfer occurring among interstitial Ce/La cations and Mn oxidation states within the Mn1−x−y(CexLay)O2−δ structure. The energy and power densities of the transparent flexible Mn1−x−y(CexLay)O2−δ full-cell pseudocapacitor device, is measured to be 0.088 μWh cm−2 and 843 µW cm−2, respectively. These values show insignificant changes under vigorous twisting and bending to 45–180° confirming these value-added materials are intriguing alternatives for size-sensitive energy storage devices.</p

    Biopolymers for the Nano-microencapsulation of Bioactive Ingredients by Electrohydrodynamic Processing

    Full text link
    corecore